ZOJ - 3777 Problem Arrangement(状态压缩dp)

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777

The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem setter, Edward is going to arrange the order of the problems. As we know, the arrangement will have a great effect on the result of the contest. For example, it will take more time to finish the first problem if the easiest problem hides in the middle of the problem list.

There are N problems in the contest. Certainly, it's not interesting if the problems are sorted in the order of increasing difficulty. Edward decides to arrange the problems in a different way. After a careful study, he found out that the i-th problem placed in the j-th position will add Pij points of "interesting value" to the contest.

Edward wrote a program which can generate a random permutation of the problems. If the total interesting value of a permutation is larger than or equal to M points, the permutation is acceptable. Edward wants to know the expected times of generation needed to obtain the first acceptable permutation.

Input

There are multiple test cases. The first line of input contains an integer Tindicating the number of test cases. For each test case:

The first line contains two integers N (1 <= N <= 12) and M (1 <= M <= 500).

The next N lines, each line contains N integers. The j-th integer in the i-th line is Pij (0 <= Pij <= 100).

Output

For each test case, output the expected times in the form of irreducible fraction. An irreducible fraction is a fraction in which the numerator and denominator are positive integers and have no other common divisors than 1. If it is impossible to get an acceptable permutation, output "No solution" instead.

Sample Input
2
3 10
2 4 1
3 2 2
4 5 3
2 6
1 3
2 4
Sample Output
3/1
No solution
题目大意“”:有n个题,每个题放在不同位置时的兴趣值不同,问有多少种排列方式可以使得兴趣值和大于等于M,输出全排列和方案数的比值

ps:第一次做状态压缩的dp,还是现了解的状态压缩是什么鬼,这道题只是状压的一种应用。建议不懂什么是状态压缩的先了解状态压缩。推荐博客入门状态压缩

看懂上面的例题然后做这个题就不难入手了;

分析:因为n个位置,n<=12,每个位置可以有不同的题,但是一个题只能对应一个位置,建立1<<n的状态,在从0-1<<n的状态下,首先看看二进制下位置为1的个数temp,表示已经有temp个题已经加入,然后处理第temp+1个题,放到二进制位数为0的地方,对每个为0的位置都遍历一遍,计算出如果放到该位置的dp数(dp【i】【k】值表示状态i时兴趣值为k的个数,然后在将a[temp+1][j]加到dp[i+(1<<(j-1))]k+a[temp+1][j]]的中,最后判断状态(1<<n)-1即n的二进制位置全为1即全排列的时候dp[(1<<n)-1][m]

#include <iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>

using namespace std;

int dp[1<<13][600];
int a[15][15];
int q[15];

int gcd(int a,int b)
{
    return b==0?a:gcd(b,a%b);
}
int main()
{
    q[1]=1;
    for(int i=2;i<=13;i++)
        q[i]=q[i-1]*i;
    int t;
    int n,m;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                scanf("%d",&a[i][j]);
            }
        }
        memset(dp,0,sizeof(dp));
        dp[0][0]=1;
        for(int i=0;i<=(1<<n);i++)
        {
            int temp=0;
            for(int j=1;j<=n;j++)
            {
                if(i&(1<<(j-1)))temp++;///i的二进制j位置是1的话,表示第j个位置已经排好了,也就是已经有temp个题了
            }
            for(int j=1;j<=n;j++)
            {
                if(i&(1<<(j-1)))continue;///找一下第j个位置是0的
                for(int k=0;k<=m;k++)
                {
                    if(k+a[temp+1][j]>=m)
                        dp[i+(1<<(j-1))][m]+=dp[i][k];
                    else
                        dp[i+(1<<(j-1))][k+a[temp+1][j]]+=dp[i][k];
                        ///形成 dp[i+(1<<(j-1))][k+a[temp+1][j]]的个数是由形成dp[i][k]的个数组合成的
                }
            }
        }
        if(dp[(1<<n)-1][m]==0)printf("No solution\n");
        else
        {
            int h=gcd(q[n],dp[(1<<n)-1][m]);
            printf("%d/%d\n",q[n]/h,dp[(1<<n)-1][m]/h);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值