漫步数学分析三十二——可微映射的连续性

对于单变量实值函数而言, f:(a,b)R x0 处可微,那么

limxx0(f(x)f(x0))=limxx0(f(x)f(x0)xx0)(xx0)=f(x0)limxx0(xx0)=f(x0)0=0

所以 limxx0(f(x)f(x0))=0 ,这就意味着 f x0处连续。

这些想法可以推广到更一般的情况: f:ARnRm ,从而引出下面的定理。

3 假设 ARn 是开集且 f:ARm A 上可微,那么f是连续的。事实上,对于每个 x0A 存在一个常数 M>0,δ0>0 使得 xx0<δ0 意味着 f(x)f(x0)Mxx0 。(这就是利普希茨(Lipschitz)性质)

前面我们讨论的都是实值函数的特殊情况, f:RnR ,函数 c:RRm 也是重要的,这里的 c 表示Rm中的曲线或路径,这种情况下 Dc(t):RRm 用向量

dc1dtdcmdt

表示,其中 c(t)=(c1(t),,cm(t)) 。这个向量用 c(t) 表示并称为曲线的切向量或速度向量,如果注意到 c(t)=limh0(c(t+h)c(t))/h 并利用事实: [c(t+h)c(t)]/h 是近似曲线切线的一条弦,那么我们将看到 c(t) 应该表示精确的且向量(如图1)。 用移动的质点来说的话, (c(t+h)c(t))/h 是速度的近似,因为它是位移/时间,所以 c(t) 是瞬时速度。

严格来讲我们应该讲 c(t) 表示成列向量,因为矩阵 Dc(t) 矩阵是一个 3×1 矩阵。然而这样的话排版比较麻烦,所以我们以后写 c(t) 时表示行向量。

1 证明 f:RR,x|x| 是连续的但在0处不可微。

对于 x0,f(x)=x ,对于 x<0,f(x)=x ,所以 f (0,),(,0)上是连续的。因为 limx0f(x)=0=f(0) ,那么 f 在0处也是连续的,所以f在所有点处均连续。最后, f 在0处不可微,因为如果可微的话,那么

limx0f(x)f(0)x0=limx0f(x)x

将会存在,但是当 x>0 时, f(x)/x 为+1,当 x<0 时, f(x)/x 为-1,从而极限不可能存在。



图1

2 函数的导数一定连续吗?

答案为否,但是实例不是很明显。也许最简单的例子是

f(x)={x2sin(1x),0,x0x=0

如图2所示。

为了证明零处不可微,我们需要说明

x0,f(x)x0

事实上,当 x0 |f(x)/x|=|xsin(1/x)||x|0 ,从而 f(0) 存在且是零,故 f 在0处可微。接下来,根据基本微积分内容

f(x)=2xsin(1x)cos(1x),x0

x0 时第一项 0 但是第二项在 +1,1 之间震荡,所以 limx0f(x) 不存在,从而 f 存在但是不连续。


这里写图片描述
图2

3 c(t)=(t2,t,sint) ,找出 c(t) 在点 c(0)=(0,0,0) 处的切向量。

c(t)=(2t,1,cost) ,令 t=0,c(0)=(0,1,1) ,即 c(t) 在点 (0,0,0) 处的切向量。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值