漫步最优化二十七——二次插值法


仿










——

在一维优化的近似法中,我们先假定目标函数的近似表达式,通常用低阶多项式。如果我们假定二阶多项式为

p(x)=a0+a1x+a2x2

其中 a0,a1,a2 是常数,那么我们就得到二次插值法。


p(xi)=a0+a1xi+a2x2i=f(xi)=fi

其中 i=1,2,3,[x1,x3] 包含 f(x) 的最小值 x 。假设 fi 的值是已知的,那么通过同时求解三个等式可得 a0,a1,a2 ,推到出的多项式 p(x) 就是 f(x) 的近似。基于这样的场景,假设 p(x),f(x) 的图像如图1所示,显然, p(x) 的最小值 x¯ 很靠近 x ,如果 f(x) 可以用二阶多项式表示,那么 x¯x ,如果 f(x) 就是二次函数,那么 p(x) 就是 f(x) 的准确表示且 x¯=x

p(x) x 的一阶导为

p(x)=a1+2a2x

如果

p(x)=0

a20 ,那么 p(x) 的最小值为

x¯=a12a2

通过求解上面的等式组可得

a1a2=(x22x23)f1+(x23x21)f2+(x21x22)f3(x1x2)(x1x3)(x2x3)=(x2x3)f1+(x3x1)f2+(x1x2)f3(x1x2)(x1x3)(x2x3)

所以

x¯=(x22x23)f1+(x23x21)f2+(x21x22)f32[(x2x3)f1+(x3x1)f2+(x1x2)f3]


这里写图片描述
图1

上面的过程是二次插值法的一次迭代。如果 f(x) 不能用二阶多项式表示,那么需要多执行几次这样的迭代。比较合适的策略是每次迭代的时候缩小不确定区间,可以舍弃 x1 x3 来实现该目的,然后用保留下来的两点以及 x¯ 进行新的迭代。

几次迭代后,三个点将会在 x 的邻域内,因此 p(x) 的二阶多项式将会是 f(x) 的精确表示,且可以确定任意精度范围内的 x

  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值