埃尔朗根纲领(1872)的中译本(2010-01-03 21:53:27)

这篇博客介绍了数学家克莱因在19世纪末的数学成就,主要聚焦于他的椭圆模函数研究、自守函数理论以及埃朗根纲领。克莱因引入了椭圆模函数的基本域概念,发现了克莱因不变量J(tau),并展示了如何将几何、代数和分析学统一起来。他还提出了双曲几何和椭圆几何的克莱因模型,为非欧几何提供了新的理解。
摘要由CSDN通过智能技术生成


克莱因的数学成就:
一、分析
1.1对椭圆模函数(Elliptic Modular Functions)的研究
DedekindEta(tau) Dedekind eta function η(tau)
KleinInvariantJ(tau) Klein invariant modular function J(tau)
ModularLambda(tau) modular lambda function λ(tau)
历史:
戴德金(1877)
克莱因(1878)
R.Fricke(1890-1892)
克莱因引进椭圆模函数[一种特殊的自守函数]的基本域的概念,这是椭圆函数周期四边形及二十面体群相应的圆弧三角形的自然推广。但是庞加莱考虑更一般的基本域,并独立于戴德金(1877)发现基本不变量J(tau),它取基本域内的每个值只有一次,从而所有椭圆模函数都可以表为J(tau)的有理函数。
J(z)可以用雅可比θ函数JT2,JT3,JT4定义,其中Im(z)>0。这个定义对实轴上方的点也有效[即z不一定是纯虚数tau]。
J(i+m)=1,m∈Z
J(i)=1
J((-1+isqrt(3))/2)=1
J((1+isqrt(3))/2)=0
J((1+isqrt(7))/2)=-125/64
J((1+isqrt(11))/2)=-512/27
J((1+isqrt(19))/2)=-512
J((1+i3sqrt(3))/2)=-64000/9
J((1+isqrt(43))/2)=-512000
J((1+isqrt(67))/2)=-85184000
J((1+isqrt(163))/2)=-151931373056000
一般性质:
周期性:J(m+z)=J(z),其中m∈Z。
J(z)的解析边界上的极点构成一稠密集。
J(z)没有本性奇点,没有支点,没有分支切割。
实轴Im(z)=0是解析区域的自然边界。
指数形式的傅里叶级数:
J(z)=(1/1728)(e^(-2ipiz)+744+∑[k=1->∞]a_ke^(2kipiz)),
http://oeis.org/A000521
Coefficients of modular functi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值