椭圆函数与模函数(2012.10出版)(2013-01-16 09:34:57)

20160814添加:
目录
绪论 椭圆曲线及其在密码学中的应用 l
1.引言 l
2.牛顿对曲线的分类
参见数学及其历史第7章第4节牛顿的三次方程分类
一次和二次曲线是直线和圆锥截线。
由解析几何开发的第一个新问题是对三次曲线的研究,它也是第一个被认为是真正属于这个学科的问题。牛顿对这个问题进行了相当完全的分类(1695)[参见鲍尔(Ball,W.W.R.)(1890)的评论]
牛顿(1667)从x和y的一般三次方程ay^3+bxy^2+cx^2y+dx^3+ey^2+fxy+gx^2+hy+kx+l=0出发,经一般的坐标轴变换后导出一个有84项的方程,然后证明后者可以简化为下述形式的方程之一:
Axy^2+By=Cx^3+Dx^2+Ex+F,
xy=Ax^3+Bx^2+Cx+D,
y^2=Ax^3+Bx^2+Cx+D,
y=Ax^3+Bx^2+Cx+D.
接着,牛顿按照[等号]右边[多项式]的根将曲线分成72类(遗漏了6类)。他的文章没有给出详细的证明;斯特林(1717)补上了证明,其中还包括牛顿忽略了的4类。牛顿的分类因缺少一般的分类原则而遭到后世某些数学家,如欧拉的批评。人们肯定需要一个原则,来降低分类的复杂性。实际上,这样的原则已隐含在牛顿(1667)第29节“影子(即投影)生成的曲线”的一个随意的评注中。该原则将三次曲线约化为5种类型,见图71~75[此图选自牛顿出版于1710年的文章的英文译本;参见怀特塞德(Whiteside,D.T.)(1964)].
读者可能想知道最熟悉的三次曲线y=x^3是这5类中的哪一类!回答是:它等价于牛顿的图75——有尖点的图形。
3.椭圆曲线与椭圆积分
4.阿贝尔·雅可比·艾森斯坦和黎曼
5.椭圆曲线的加法 1l
6.椭圆曲线密码体制
第3章 维尔斯特拉斯函数
12.维尔斯特拉斯函数ζ(u)
参见椭圆函数及其应用第3章拟椭圆函数第1节Zeta函数ζ(u)
拟椭圆函数从严格的定义上看均不属于椭圆函数。
在有的书籍中,引入第二种和第三种椭圆函数的概念。而函数σ属于第三种椭圆函数。参见沈睿:椭圆函数概论,1982,P.101-109。
ζ(u)是由椭圆函数求积分而得到的。
ζ(u)是奇函数,不是椭圆函数,不具有周期性,既无周期2ω_1,又无周期2ω_2。
13,维尔斯特拉斯函数σ(u)
参见椭圆函数及其应用第3章拟椭圆函数第2节Sigma函数σ(u)
σ(u)与其他拟椭圆函数存在简单的关系。
当积分下限固定时,∫ζ(u)du不是积分上限的单值函数。可将其定义为一个函数的对数,该函数即σ(u),写作lnσ(u)=∫[0,u]ζ(u)du或ζ(u)=σ'(u)/σ(u)
σ(u)是整函数,又是奇函数。
14.用函数σ(u)或用函数ζ(u)表示任意的椭圆函数
15.维尔斯特拉斯函数的加法定理
16.用函数P及P'表示各椭圆函数
参见椭圆函数及其应用第2章二阶椭圆函数第1节卫尔斯特拉斯函数
P是二阶椭圆函数,是偶函数。
P'是三阶椭圆函数,是奇函数。
17.椭圆积分
第4章 西塔函数
参见椭圆函数及其应用第3章拟椭圆函数第4节Theta函数、第5节卫尔斯特拉斯函数与θ函数
Theta函数具有一个实数周期,而且可以表示为收敛很快的级数式。
Theta函数是由雅可比定义的,最初他在1829年引入Theta函数Θ(u)和H(u),用的是规一化格阵2K,2iK'。后来雅可比看到用v=u/2K作为变量的优越性。
这样就得到了4个Theta函数。
具有特征参量a,b的一般Theta函数的理论是埃尔米特继雅可比之后于1858年引入的。
18.西塔函数的无穷乘积表示
19.西格玛函数与西塔函数的关系
20.函数θ(u)及θ(u)的单级数展开式
21.量e1,e2,e3用西塔函数零值的表示式
22.西塔函数的变换

20121225问:已知g_2,g_3,求T,T',tau?
半周期w_1(g_2,g_3),w_3(g_2,g_3)
w_1(-1,0)=[(1+i)/(4sqrt(2pi))]Γ(1/4)^2,w_3(-1,0)=[(-1+i)/(4sqrt(2pi))]Γ(1/4)^2
w_1(1,0)=[1/(4sqrt(pi))]Γ(1/4)^2,w_3(1,0)=[i/(4sqrt(pi))]Γ(1/4)^2
w_1(0,1)=[1/(4pi)]Γ(1/3)^3,w_3(0,1)=[(1+sqrt(3)i)/(8pi)]Γ(1/3)^3
cout<<detail::g2(fcomplex(0,2),fcomplex(1,0))<<endl;//(129.987,0)
cout<<detail::g3(fcomplex(0,2),fcomplex(1,0))<<endl;//(284.355,-0)
//相应于半周期{ω,ω’}对魏尔斯特拉斯椭圆函数给出不变量{g_2,g_3}
输入:WeierstrassInvariants[T/2=ω=1,T'/2=ω'=2i]
输出:g_2=8.12422,g_3=4.44305
  cout<<detail::g2(fcomplex(0,2),fcomplex(2,0))<<endl;//(8.12422,0)
  cout<<detail::g3(fcomplex(0,2),fcomplex(2,0))<<endl;//(4.44305,-0)
考虑模形式g_2=12.7695,g_3=-4.59211下的双周期函数P(z,g_2,g_3):
P(z=0.5,g_2=12.7695,g_3=-4.59211)=
P(z=0.5,tau=0.859743i,w_1=2.156516)=
P(z=0.5,w_1=2.156516,w_2=1.854049i)=4.151395(模形式g_2=12.7695,g_3=-4.59211下的双周期函数)
tau=w_2/w_1=0.859743i
P(z=0.5,tau=0.859743i,w_1=1)=7.294863(另外一组模形式下的双周期函数)
P(z=0.5,tau=0.859743i,w_1=8.626062)=4.000621(另外一组模形式下的双周期函数)
P(z=-8.5,w_1=2.156516,w_2=1.854049i)=62.934325(错误值62.925814)=P(z=-8.5,g_2=12.7695,g_3=-4.59211)=62.9269
按照c++和jsp计算的结果:
最小实周期T=2.156516,最小虚周期T'=1.854049i
相差1个实周期T=2.156516:P(z=-6.343484)=62.934325
jsp:P(z=-6.343484,g_2=12.7695,g_3=-4.59211)=62.9287
相差1个虚周期T'=1.854049i:P(z=-8.500000+1.854049i)=62.934325-0.000998i
jsp:P(z=-8.5+1.85405i,g_2=12.7695,g_3=-4.59211)=62.9269+0.0014i
相差1/2个实周期T/2=1.078258:P(z=-7.421742)=1.636863
jsp:P(z=-7.421742,g_2=12.7695,g_3=-4.59211)=1.63687
相差1/2个虚周期T'/2=0.9270245i:P(z=-8.500000+0.9270245i)=-1.819202
jsp:P(z=-8.5+0.927025i,g_2=12.7695,g_3=-4.59211)=-1.81919-0.10^(-5)*i
相差4个实周期4T=8.626062:P(z=0.126062)=62.936321(错误值62.925814)=P(z=0.126062,g_2=12.7695,g_3=-4.59211)=62.9363
相差4个虚周
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值