椭圆函数与模函数(2012.10出版)(2013-01-16 09:34:57)

20160814添加:
目录
绪论 椭圆曲线及其在密码学中的应用 l
1.引言 l
2.牛顿对曲线的分类
参见数学及其历史第7章第4节牛顿的三次方程分类
一次和二次曲线是直线和圆锥截线。
由解析几何开发的第一个新问题是对三次曲线的研究,它也是第一个被认为是真正属于这个学科的问题。牛顿对这个问题进行了相当完全的分类(1695)[参见鲍尔(Ball,W.W.R.)(1890)的评论]
牛顿(1667)从x和y的一般三次方程ay^3+bxy^2+cx^2y+dx^3+ey^2+fxy+gx^2+hy+kx+l=0出发,经一般的坐标轴变换后导出一个有84项的方程,然后证明后者可以简化为下述形式的方程之一:
Axy^2+By=Cx^3+Dx^2+Ex+F,
xy=Ax^3+Bx^2+Cx+D,
y^2=Ax^3+Bx^2+Cx+D,
y=Ax^3+Bx^2+Cx+D.
接着,牛顿按照[等号]右边[多项式]的根将曲线分成72类(遗漏了6类)。他的文章没有给出详细的证明;斯特林(1717)补上了证明,其中还包括牛顿忽略了的4类。牛顿的分类因缺少一般的分类原则而遭到后世某些数学家,如欧拉的批评。人们肯定需要一个原则,来降低分类的复杂性。实际上,这样的原则已隐含在牛顿(1667)第29节“影子(即投影)生成的曲线”的一个随意的评注中。该原则将三次曲线约化为5种类型,见图71~75[此图选自牛顿出版于1710年的文章的英文译本;参见怀特塞德(Whiteside,D.T.)(1964)].
读者可能想知道最熟悉的三次曲线y=x^3是这5类中的哪一类!回答是:它等价于牛顿的图75——有尖点的图形。
3.椭圆曲线与椭圆积分
4.阿贝尔·雅可比·艾森斯坦和黎曼
5.椭圆曲线的加法 1l
6.椭圆曲线密码体制
第3章 维尔斯特拉斯函数
12.维尔斯特拉斯函数ζ(u)
参见椭圆函数及其应用第3章拟椭圆函数第1节Zeta函数ζ(u)
拟椭圆函数从严格的定义上看均不属于椭圆函数。
在有的书籍中,引入第二种和第三种椭圆函数的概念。而函数σ属于第三种椭圆函数。参见沈睿:椭圆函数概论,1982,P.101-109。
ζ(u)是由椭圆函数求积分而得到的。
ζ(u)是奇函数,不是椭圆函数,不具有周期性,既无周期2ω_1,又无周期2ω_2。
13,维尔斯特拉斯函数σ(u)
参见椭圆函数及其应用第3章拟椭圆函数第2节Sigma函数σ(u)
σ(u)与其他拟椭圆函数存在简单的关系。
当积分下限固定时,∫ζ(u)du不是积分上限的单值函数。可将其定义为一个函数的对数,该函数即σ(u),写作lnσ(u)=∫[0,u]ζ(u)du或ζ(u)=σ'(u)/σ(u)
σ(u)是整函数,又是奇函数。
14.用函数σ(u)或用函数ζ(u)表示任意的椭圆函数
15.维尔斯特拉斯函数的加法定理
16.用函数P及P'表示各椭圆函数
参见椭圆函数及其应用第2章二阶椭圆函数第1节卫尔斯特拉斯函数
P是二阶椭圆函数,是偶函数。
P'是三阶椭圆函数,是奇函数。
17.椭圆积分
第4章 西塔函数
参见椭圆函数及其应用第3章拟椭圆函数第4节Theta函数、第5节卫尔斯特拉斯函数与θ函数
Theta函数具有一个实数周期,而且可以表示为收敛很快的级数式。
Theta函数是由雅可比定义的,最初他在1829年引入Theta函数Θ(u)和H(u),用的是规一化格阵2K,2iK'。后来雅可比看到用v=u/2K作为变量的优越性。
这样就得到了4个Theta函数。
具有特征参量a,b的一般Theta函数的理论是埃尔米特继雅可比之后于1858年引入的。
18.西塔函数的无穷乘积表示
19.西格玛函数与西塔函数的关系
20.函数θ(u)及θ(u)的单级数展开式
21.量e1,e2,e3用西塔函数零值的表示式
22.西塔函数的变换

20121225问:已知g_2,g_3,求T,T',tau?
半周期w_1(g_2,g_3),w_3(g_2,g_3)
w_1(-1,0)=[(1+i)/(4sqrt(2pi))]Γ(1/4)^2,w_3(-1,0)=[(-1+i)/(4sqrt(2pi))]Γ(1/4)^2
w_1(1,0)=[1/(4sqrt(pi))]Γ(1/4)^2,w_3(1,0)=[i/(4sqrt(pi))]Γ(1/4)^2
w_1(0,1)=[1/(4pi)]Γ(1/3)^3,w_3(0,1)=[(1+sqrt(3)i)/(8pi)]Γ(1/3)^3
cout<<detail::g2(fcomplex(0,2),fcomplex(1,0))<<endl;//(129.987,0)
cout<<detail::g3(fcomplex(0,2),fcomplex(1,0))<<endl;//(284.355,-0)
//相应于半周期{ω,ω’}对魏尔斯特拉斯椭圆函数给出不变量{g_2,g_3}
输入:WeierstrassInvariants[T/2=ω=1,T'/2=ω'=2i]
输出:g_2=8.12422,g_3=4.44305
  cout<<detail::g2(fcomplex(0,2),fcomplex(2,0))<<endl;//(8.12422,0)
  cout<<detail::g3(fcomplex(0,2),fcomplex(2,0))<<endl;//(4.44305,-0)
考虑模形式g_2=12.7695,g_3=-4.59211下的双周期函数P(z,g_2,g_3):
P(z=0.5,g_2=12.7695,g_3=-4.59211)=
P(z=0.5,tau=0.859743i,w_1=2.156516)=
P(z=0.5,w_1=2.156516,w_2=1.854049i)=4.151395(模形式g_2=12.7695,g_3=-4.59211下的双周期函数)
tau=w_2/w_1=0.859743i
P(z=0.5,tau=0.859743i,w_1=1)=7.294863(另外一组模形式下的双周期函数)
P(z=0.5,tau=0.859743i,w_1=8.626062)=4.000621(另外一组模形式下的双周期函数)
P(z=-8.5,w_1=2.156516,w_2=1.854049i)=62.934325(错误值62.925814)=P(z=-8.5,g_2=12.7695,g_3=-4.59211)=62.9269
按照c++和jsp计算的结果:
最小实周期T=2.156516,最小虚周期T'=1.854049i
相差1个实周期T=2.156516:P(z=-6.343484)=62.934325
jsp:P(z=-6.343484,g_2=12.7695,g_3=-4.59211)=62.9287
相差1个虚周期T'=1.854049i:P(z=-8.500000+1.854049i)=62.934325-0.000998i
jsp:P(z=-8.5+1.85405i,g_2=12.7695,g_3=-4.59211)=62.9269+0.0014i
相差1/2个实周期T/2=1.078258:P(z=-7.421742)=1.636863
jsp:P(z=-7.421742,g_2=12.7695,g_3=-4.59211)=1.63687
相差1/2个虚周期T'/2=0.9270245i:P(z=-8.500000+0.9270245i)=-1.819202
jsp:P(z=-8.5+0.927025i,g_2=12.7695,g_3=-4.59211)=-1.81919-0.10^(-5)*i
相差4个实周期4T=8.626062:P(z=0.126062)=62.936321(错误值62.925814)=P(z=0.126062,g_2=12.7695,g_3=-4.59211)=62.9363
相差4个虚周
英文版 内容: 第0章 基础知识 1.多复变初步 柯西公式及应用 多变量 魏尔斯特拉斯定理及其推论 解析簇 2.复流形 复流形 子流形与子簇 De Rham和Dolbeault上同调 复流形上的积分 3.层和上同调 起源:米塔一列夫勒问题 层 层的上同调 De Rham定理 Colbeault定理 4.流形的拓扑 闭链的相交 庞加莱对偶 解析闭链的相交 5.向量丛、联络和曲率 全纯复向量丛 度量、联络和曲率 6.紧致复流形的调和理论 霍奇定理 霍奇定理I的证明??局部理论 霍奇定理II的证明??全局理论 霍奇定理的应用 7.Kahler流形 Kahler条件 霍奇恒等式和霍奇分解 Lefschetz分解 第1章 复代数簇 1.除子与线丛 除子 线丛 线丛的陈类 2.消灭定理及推论 小平消灭定理 超平面截面的Lefsclaetz定理 定理 (1,1)类的Lefsclaetz定理 3.代数簇 解析簇和代数簇 簇的次数 代数簇的切空间 4.小平嵌入定理 线丛和到投影空间的映射 胀开 小平定理的证明 5.格拉斯曼理论 定义 胞腔分解 Schubert微积分 万有丛 Plucker嵌入 第2章 Riemann曲面和代数曲线 1.预备知识 Riemann曲面的嵌入 Riemann-Hurwitz公式 亏格公式 G=1,1的情况 2.阿贝尔定理 阿贝尔定理??第一种描述 第一互反定律及推论 阿贝尔定理??第二种描述 雅可比反演问题 3.曲线的线性系统 互反定律II Riemann-Roch公式 典范曲线 特殊线性系统I 超椭圆曲线与黎曼点数 特殊线性系统II 4.Plucker公式 伴随曲线 分歧 广义Plucker公式I 广义Plucker公式II Weierstrass点 平面曲线的Plucker公式 5.对应 定义和公式 空间曲线的几何性 特殊线性系统III 6.复环面和Abel簇 黎曼条件 复环面上的线丛 函数 Abel簇上的群结构 固有公式 7.曲线及曲线的行列式 初步知识 黎曼定理 黎曼奇异定理 特殊线性系统IV Torelli定理 第3章 深入技巧 1.分布与流 定义;幂公式 平滑与整齐 流的上同调 2.流在复分析上的应用 解析簇相关的流 解析簇的相交数 莱维扩展与常态映射定理 3.陈类 定义 高斯博内公式 关于全纯向量丛陈类讨论 4.不动点与剩余公式 莱夫谢茨不动点公式 全纯莱夫谢茨不动点公式 博特剩余公式 广义Hirzebruch-Riemann-Roch公式 5.谱序列及其应用 滤子化双重复形的谱序列 超上同调 二类微分 勒雷谱序列 第4章 曲面 1.初步知识 2.相交数、从属公式与Riemann-Poch 胀开与收缩 二次曲面 三次曲面 2.有理映射 有理和双有理映射 曲线与代数面 面之间双有理映射的结构 3.有理曲面I 诺特引理 有理直纹面 广义有理曲面 极小度曲面 最大类曲线 施泰纳构造 Enriques-Petri定理 4.有理曲面II Castelnuovo-Enriques定婴 Enriques曲面 修正的三次曲面 中两个二次曲面的相交 5.无理曲面 阿尔巴内塞映射 无理直纹曲面 椭圆曲面简介 小平数和分类定理I 分类定理II K-3曲面 诺特曲面 6.诺特公式 平滑超平面的诺特公式 胀开子流形 曲面的寻常奇点 一般曲面的诺特公式 几个例子 曲面的孤立奇点 第5章 留数(残数) 1.留数的基本性质 定义和上同调解释 整体留数定理 变换法则与局部对偶性 2.留数的应用 相交数 有限全纯映射 平面投影几何中的应用 3.交换同调代数应用初步 交换代数 同调代数 科斯居尔复形及其应用 凝聚层的简短游程 4.整体对偶 整体扩展 广义整体对偶定理解释 整体扩展和带孤立零点的向量场 整体对偶和曲面上点的剩余 的扩张 曲面上的点和秩2向量丛 留数和向量丛 第6章 二次线丛 1.二次曲面初步 二次曲面的秧 二次曲面中的线性空间 二次曲面的线性系统 五个锥线论问题 2.二次线丛介绍 格拉斯曼G(2,4)几何 线丛 二次线丛和伴随库默尔曲面I 二次线丛的奇异线 两个构形 3.二次线丛的线 二次线丛的线簇 线簇上的曲线 两个修正构形 群法则 4.二次线丛:Reprise 二次线丛和伴随库默尔曲面II 二次线丛的有理性 索引
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值