htt p ://www.docin.com/p-49451820.html
http://d.g.wanfangdata.com.cn/Thesis_Y1519793.aspx
[摘要]:本文以原始文献分析法为研究方法,以研读阿贝尔的法文论文为主,着重考察18-19世纪椭圆积分向椭圆函数转变的过程。论文分为三章。第一章在18世纪微积分进一步发展的背景下,分析欧拉、勒让德、伯努利家族等数学家对椭圆积分进行的研究工作,指出勒让德将椭圆积分发展成三种标准表达形式以及欧拉、伯努利家族得到的椭圆积分加法定理,成为19世纪阿贝尔等人进一步研究椭圆积分和发展椭圆函数论的理论基础。 第二章详细梳理阿贝尔建立和发展椭圆函数论的思想和方法,认为他在试图对椭圆积分进行求解无果的前提下,转变思想,采取与三角函数类比的方式,从反函数的角度入手,由椭圆积分诱导出椭圆函数的概念。另一方面,阿贝尔对R的阶大于4的进行积分,提出了比椭圆积分更广泛的阿贝尔积分,同时进一步推广欧拉的椭圆积分加法定理,得到了现在被称为“阿贝尔大定理”的加法定理,从而创建了定性分析阿贝尔积分的关键性定理. 第三章通过分析雅可比、外尔斯特拉斯、黎曼等人在椭圆函数论方面的成绩,指出由于受到阿贝尔反演思想的影响,上述数学家给出了更一般、简捷的椭圆函数理论形式,并且反演了超椭圆积分,推动了近代复分析函数领域的成型与发展. 文章回溯18-19世纪椭圆函数发展历程,指出阿贝尔在欧拉、勒让德、伯努利家族等数学家工作的基础上,创立椭圆函数理论,由此影响了19世纪特殊函数论的发展,对复变函数论,甚至是近代代数几何学的发展产生深远影响.
[关键词]:椭圆积分 椭圆函数 阿贝尔 函数 积分
中文摘要
绪论
一 椭圆积分的产生及发展
(一) 18世纪的积分技术
(二) 椭圆积分
(三) 勒让德对椭圆积分的贡献
二 阿贝尔在椭圆函数论方面的奠基性工作
(一) 关于阿贝尔
(二) 阿贝尔对椭圆积分的研究
(三) 超椭圆积分的加法定理
(四) 阿贝尔积分
(五) 由反演思想得到的一些性质
(六) 椭圆函数变换的问题
三 阿贝尔思想影响下19世纪椭圆函数论的发展
(一) 雅可比椭圆函数理论
(二) 外尔斯特拉斯的椭圆函数论
(三) 其他数学家的椭圆函数论
结语
部分引文对照
参考文献
致谢
绪论(节选)
国内单独对阿贝尔的椭圆函数的发展史的研究由于受语言的困难、文化背景的差异、资料的限制等,目前还很少。涉及这方面的研究主要是椭圆函数和椭圆积分解的问题,这是纯粹的数学问题研究。胡作玄的《近代数学史》中对椭圆函数和椭圆积分、阿贝尔函数和阿贝尔积分用归纳总结的方法作了一些介绍,在其著作中涉及了18、19世纪阿贝尔、雅可比、外尔斯特拉斯、黎曼等椭圆函数理念研究者的研究成果,但对其理论的建立方面介绍较少;李文林《数学珍宝》节选翻译了阿贝尔函数和阿贝尔积分论著和雅可比关于雅可比θ函数理论的论文;张致中翻译的《高级超越函数》比较详细的介绍了雅可比椭圆函数和外尔斯特拉斯椭圆函数理论;王竹溪、郭敦仁编写的《特殊函数论》对外氏和雅氏椭圆函数用通俗的数学语言作了介绍。在解恩泽,徐本顺主编的《世界数学家思想方法》对阿贝尔、外尔斯特拉斯等19世纪椭圆函数论研究者建立椭圆函数理论的思想方法作了介绍。梁宗巨、王青建、孙宏安在《世界数学通史》(下)等著作中,对在18、19世纪研究椭圆函数的历史背景、研究者概况作了介绍。吴文俊主编《世界著名科学家传(数学家)》有阿贝尔的专门传记。杜瑞芝主编的《坎坷奇星—阿贝尔》对阿贝尔生平作了详尽介绍。
国外对阿贝尔的研究很多。可资利用的原始文献有《阿贝尔全集》(法文版)收集了阿贝尔一生中关于椭圆函数论的所有论著(除一篇之外)。关于阿贝尔的传记,B.Holmboe在编辑《阿贝尔全集》时,就在“前言”中做专门介绍,1834年,G.Libri撰写了阿贝尔传,1884年C.A.Bjerknes也撰写了阿贝尔传,最近(2000年),A.Stubhaug出版了一本专门研究阿贝尔的新书,《阿贝尔与他的时代》。吉利斯皮主编的《科学史传记词典》(Dictionary of Scientific Biography)中也有阿贝尔传。一般数学史论著中都对阿贝尔的工作有一定的介绍。其中,[美]M·克莱因的《古今数学思想》比较系统的介绍了从椭圆积分到椭圆函数的发展历程,对阿贝尔和雅克比研究椭圆函数的反演思想作了介绍。
(三) 勒让德对椭圆积分的贡献
椭圆积分的历史起点一般公认为由意大利数学家法拉诺(Fagnano,1713-1798)开始研究,1751年发现了双纽线的弧长的积分F(u)=∫[0,u]dw/[sqrt(1-w^4)]的加倍问题而推导出这个公式的。他证明,如果F(w)=2F(u),那么w^4=4u^2(1-u^4)/[(1+u^4)^2][按:左边应该是w^2吧?],即w与u之间存在代数关系。欧拉于1761年把倍弧长公式推广成双纽线积分的加法定理,即若F(u)+F(v)=F(w),则w=[usqrt(1-v^4)+vsqrt(1-u^4)]/(1+u^2v^2),显然当u=v时,即得出法拉诺关系,欧拉是在1751年12月23日知道法拉诺关系的。后来,雅可比把1751年12月23日这一天称为“椭圆函数的生日。”
勒让德主要证明了一般椭圆积分∫P(x)/sqrt(R(x))dx(其中P(x)是x的任一有理函数,而R(x)是通常一般的四次多项式),能化成三种类型:
F=∫dx/[sqrt(1-x^2)sqrt(1-k^2x^2)]
E=∫x^2dx/[sqrt(1-x^2)sqrt(1-k^2x^2)]
N=∫dx/[(x-a)sqrt(1-x^2)sqrt(1-k^2x^2)]
分别称为第一、第二、第三类椭圆积分,显然双纽线积分是第一类椭圆积分。经过变换,这三类积分可化为:
F(φ,k)=∫[0,φ]dφ/[sqrt(1-k^2sin^2φ)],0<k<1,
E(φ,k)=∫[0,φ][sqrt(1-k^2sin^2φ)]dφ,0<k<1,
Π(φ,n,k)=∫[0,φ]dφ/[(1+nsin^2φ)sqrt(1-k^2sin^2φ)],0<k<1,
这种分法至今仍在使用,其中k称为模。而k'=sqrt(1-k^2)被称为余模。
当φ=pi/2时,积分F=F(k)=F(pi/2,k),E=E(k)=E(pi/2,k)分别称为第一类和第二类完全椭圆积分。
通过定义F'=F'(k)=F(pi/2,k'),E'=E'(k)=E(pi/2,k'),勒让德发现它们有如下的关系(1825):
FE'+F'E-FF'=pi/2。
勒让德在他的书中得出了一系列加法公式及变换公式,以及不同的参数n的第三类积分之间的关系。在《椭圆函数研究》第二卷(1826)中,勒让德发表了一个椭圆积分表,它也是今天同类表的基础。
(三) 超椭圆积分的加法定理
1826年,阿贝尔撰写了论文《关于一类极为广泛的超越函数的一个一般性质》,在这篇论文中,阿贝尔对R的阶大于4的pdx/sqrt(R)进行积分,提出了比椭圆积分更广泛的阿贝尔积分,并对欧拉的椭圆积分加法定理做了推广,得到了现在称作“阿贝尔大定理”的加法定理。这是阿贝尔积分的一条关键性定理。但是,审查人柯西和勒让德没能使它及时发表,直到1841年重新找到原稿后才面世。阿贝尔在这篇论文中没有对椭圆积分的计算再作处理,而是转向对其性质的研究,他研究椭圆积分的思想发生了转变。
以往所研究的椭圆积分∫R(x,y)dx中x,y满足y^2=P(x),且P(x)是多项式。阿贝尔将x,y的关系放宽为x,y由代数方程f(x,y)=0所确定。这样的新积分,显然是椭圆积分的推广(一般化),后人称之为阿贝尔积分。
阿贝尔对“阿贝尔大定理”的叙述很完整:“我们总能用若干预先确定的其变元是给定函数之变元的代数函数的函数之相思和去表示那特殊个数的函数和,而这特殊中的每个函数被乘上一个有理数并且其变元是任意的。”但证明却不是很严格。
当f=y^2-P(x),P(x)是一个6次多项式,而p=(n-2)/2=2时,∫R(x,y)dx是超椭圆积分。
在后继的论文中,阿贝尔借助于这个定理,发现了椭圆函数的双周期性,从而奠定了椭圆曲线(它们都可以表示成平面中的三次曲线)的理论基础。利用这种性质还可以对椭圆函数做出如下定义:只有极点的双周期解析函数是椭圆函数。
(五) 由反演思想得到的一些性质
在《关于椭圆函数的研究》(1827)这篇论文中,他借助于椭圆积分的反函数把椭圆积分的理论归结为椭圆函数的理论。具体地说,阿贝尔所考察的椭圆积分是这样的一些积分,其中被积函数是三次或四次多项式的平方根的有理函数。用现代符号表示,这些积分之中,重要的是函数u(s)=∫[0->s]dx/[sqrt(1-x^2)sqrt(1-k^2x^2)],其反函数s(u)同样起着重要作用,它恰好是椭圆函数snu。我们使用符号snu是为了表示它是普通的正弦函数的推广。在最基本的情形,即k=0,我们可分别得到u(s)=arcsins=∫[0->s]dx/[sqrt(1-x^2)]和s(u)=sinu。
u=F(φ,R)=∫[0,φ]dφ/[sqrt(1-R^2sin^2φ)],0<R<1,
u=∫dx/[sqrt(1-x^2)sqrt(1-R^2x^2)]
阿贝尔定义了fu=cnu=sqrt(1-sn^2u),Fu=dnu=sqrt(1-R^2sn^2u),然后发现了snu,cnu,dnu的若干基本性质:
sn'u=cnudnu,cn'u=-snudnu,dn'u=-k^2snucnu
还有加法公式:
sn(u+v)=(snucnvdnv+snvcnudnu)/△
cn(u+v)=(cnucnv-snusnvdnudnv)/△
dn(u+v)=(dnudnv-k^2snusnvcnucnv)/△
这里△=1-R^2sn^2usn^2v。由此,把研究椭圆积分的性质转化为对一类特殊函数椭圆函数的考察,使椭圆函数论成为一种经典的分析工具。
阿贝尔在下式中定义的量K起着三角函数中pi的作用,
K=∫[0->1]dx/[sqrt(1-x^2)sqrt(1-k^2x^2)]=∫[0,pi/2]dφ/[sqrt(1-k^2sin^2φ)]=F(k,pi/2),0<k<1,
与K联系着的是超越量K',它作为k'的函数相当于K作为k的函数,其中k'由k^2+k'^2=1定义,0<k<1。
这样,阿贝尔发现,snz的周期是4K及2iK';cnz的周期是4K及2K+2iK';dnz的周期是2K及4iK'。这两个周期的比为非实数,因而这些椭圆函数是双周期的,这是伟大的发现之一。
[
20110621:利用JT1~JT4计算sn,cn,dn
K(k=0.985171431009416)=3.16510345444743
z=0.2
t=0.5i
K'=0.5K
k=kq(q=exp(-0.5*pi)=0.207879576350762)=0.9851714
k'=ckq(q=exp(-0.5*pi)=0.207879576350762)=0.17157
错误的:
u=2Kz/pi=2*3.16510345444743*0.2/pi=0.402993488138034
正确的:
u=2Kz=2*3.16510345444743*0.2=1.26604138177897=1.266041
sn(u=1.266041;k=0.9851714)=0.8564342
cn(u=1.266041;k=0.9851714)=0.5162562
dn(u=1.266041;k=0.9851714)=0.5367607
u=arcsn(sn(u;k);k)=arcsn(0.8564342;0.9851714)=1.266041
fcomplex retqk=detail::q_from_k(fcomplex(0.985171431,0));
cout<<retqk<<endl;//(0.20788,0)
cout<<detail::kq(0.207879576350762)<<endl;//0.985171
cout<<detail::ckq(0.207879576350762)<<endl;//0.171573
q=q_from_k(k=0.985171431)=0.20788
k=kq(q=0.207879576350762)=0.985171431009416
k'=ckq(q=0.207879576350762)=0.17157287525381
tau=0.5i=>q=exp(i*pi*tau)=0.207879576350762
cout<<detail::theta_00(fcomplex(0.2,0),fcomplex(0,0.5))<<endl;//(1.12545,0)
cout<<detail::theta_00(fcomplex(0.2,0.2),fcomplex(0,0.5))<<endl;//(1.22519,-0.651829)
cout<<detail::theta_00(fcomplex(0,0),fcomplex(0,0.5))<<endl;//(1.4195,0)=JT3(z=0,tau=0.5i)=1.41949548808377
cout<<detail::theta_00(fcomplex(3.3416,0),fcomplex(0,0.5))<<endl;//(0.772187,0)
cout<<detail::theta_00(fcomplex(1.2,0),fcomplex(0,0.5))<<endl;//(1.12545,0)
cout<<detail::theta_01(fcomplex(0.2,0),fcomplex(0,0.5))<<endl;//(0.868503,0)
cout<<detail::theta_01(fcomplex(0,0),fcomplex(0,0.5))<<endl;//(0.587974,0)=JT4(z=0,tau=0.5i)=0.587974282891712
cout<<detail::theta_01(fcomplex(1.5708,0),fcomplex(0,0.5))<<endl;//(1.37765,0)
cout<<detail::theta_01(fcomplex(1.6708,0),fcomplex(0,0.5))<<endl;//(1.19643,0)
cout<<detail::theta_01(fcomplex(1.7708,0),fcomplex(0,0.5))<<endl;//(0.942211,0)
cout<<detail::theta_01(fcomplex(1.8708,0),fcomplex(0,0.5))<<endl;//(0.713678,0)
cout<<detail::theta_01(fcomplex(1,0),fcomplex(0,0.5))<<endl;//(0.587974,0)
cout<<detail::theta_01(fcomplex(1.1,0),fcomplex(0,0.5))<<endl;//(0.664798,0)
cout<<detail::theta_01(fcomplex(1.2,0),fcomplex(0,0.5))<<endl;//(0.868503,0)
cout<<detail::theta_01(fcomplex(1.3,0),fcomplex(0,0.5))<<endl;//(1.12