轻松理解skip-gram模型

引言

在许多自然语言处理任务中,许多单词表达是由他们的tf-idf分数决定的。即使这些分数告诉我们一个单词在一个文本中的相对重要性,但是他们并没有告诉我们单词的语义。Word2vec是一类神经网络模型——在给定无标签的语料库的情况下,为语料库中的单词产生一个能表达语义的向量。这些向量通常是有用的:

  • 通过词向量来计算两个单词的语义相似性
  • 对某些监督型NLP任务如文本分类,语义分析构造特征

接下来我将描述Word2vec其中一个模型,叫做skip-gram模型

skip-gram模型

在我详细介绍skip-gram模型前,我们先来了解下训练数据的格式。skip-gram模型的输入是一个单词 w I w_I wI,它的输出是 w I w_I wI的上下文 w O , 1 , . . . , w O , C {w_{O,1},...,w_{O,C}} wO,1,...,wO,C,上下文的窗口大小为 C C C。举个例子,这里有个句子“I drive my car to the store"。我们如果把"car"作为训练输入数据,单词组{“I”, “drive”, “my”, “to”, “the”, “store”}就是输出。所有这些单词,我们会进行one-hot编码。skip-gram模型图如下所示:
skip-gram

前向传播

接下来我们来看下skip-gram神经网络模型,skip-gram的神经网络模型是从前馈神经网络模型改进而来,说白了就是在前馈神经网络模型的基础上,通过一些技巧使得模型更有效。我们先上图,看一波skip-gram的神经网络模型:
nerno
在上图中,输入向量 x x x代表某个单词的one-hot编码,对应的输出向量{ y 1 y_1 y1,…, y C y_C yC}。输入层与隐藏层之间的权重矩阵 W W W的第 i i i行代表词汇表中第 i i i个单词的权重。接下来重点来了:这个权重矩阵 W W W就是我们需要学习的目标(同 W ′ W^{'} W),因为这个权重矩阵包含了词汇表中所有单词的权重信息。上述模型中,每个输出单词向量也有个 N × V N\times V N×V维的输出向量 W ′ W^{'} W。最后模型还有 N N N个结点的隐藏层,我们可以发现隐藏层节点 h i h_i hi的输入就是输入层输入的加权求和。因此由于输入向量 x x x是one-hot编码,那么只有向量中的非零元素才能对隐藏层产生输入。因此对于输入向量 x x x其中 x k = 1 x_k=1 xk=1并且$x_{k^{‘}}=0, k\ne k^{’} 。 所 以 隐 藏 层 的 输 出 只 与 权 重 矩 阵 第 。所以隐藏层的输出只与权重矩阵第 k$行相关,从数学上证明如下:
h = x T W = W k , . : = v w I ( 1 ) h = x^TW=W_{k,.}:=v_{wI}\tag{$1$} h=xTW=Wk,.:=vwI(1)
注意因为输入时one-hot编码,所以这里是不需要使用激活函数的。同理,模型输出结点 C × V C\times V C×V的输入也是由对应输入结点的加权求和计算得到:
u c , j = v w j ′ T h ( 2 ) u_{c,j}=v^{'T}_{wj}h\tag{$2$} uc,j=vwjTh(2)
其实从上图我们也看到了输出层中的每个单词都是共享权重的,因此我们有 u c , j = u j u_{c,j}=u_j uc,j=uj。最终我们通过softmax函数产生第 C C C个单词的多项式分布。
p ( w c , j = w O , c ∣ w I ) = y c , j = e x p ( u c , j ) ∑ j ′ = 1 V e x p ( u j ′ ) ( 3 ) p(w_{c,j}=w_{O,c}|w_{I}) = y_{c,j} = \frac{exp(u_{c,j})}{\sum^V_{j^{'}=1}exp(u_{}j^{'})}\tag{$3$} p(wc,j=wO,cwI)=yc,j=j=1Vexp(uj)exp(uc,j)(3)
说白了,这个值就是第C个输出单词的第j个结点的概率大小。

通过BP(反向传播)算法及随机梯度下降来学习权重

前面我讲解了skip-gram模型的输入向量及输出的概率表达,以及我们学习的目标。接下来我们详细讲解下学习权重的过程。第一步就是定义损失函数,这个损失函数就是输出单词组的条件概率,一般都是取对数,如下所示:
E = − l o g p ( w O , 1 , w O , 2 , . . . , w O , C ∣ w I ) ( 4 ) E = -logp(w_{O,1},w_{O,2},...,w_{O,C}|w_I)\tag{$4$} E=logp(wO,1,wO,2,...,wO,CwI)(4)
= − l o g ∏ c = 1 C e x p ( u c , j ) ∑ j ′ = 1 e x p ( u j ′ ) V ( 5 ) = -log\prod_{c=1}^{C}\frac{exp(u_{c,j})}{\sum^V_{j^{'}=1exp(u_j^{'})}}\tag{$5$} =logc=1Cj=1exp(uj)Vexp(uc,j)(5)
接下来就是对上面的概率求导,具体推导过程可以去看BP算法,我们得到输出权重矩阵 W ′ W^{'} W的更新规则:
w ′ ( n e w ) = w i j ′ ( o l d ) − η ⋅ ∑ c = 1 C ( y c , j − t c , j ) ⋅ h i ( 6 ) w^{'(new)} = w_{ij}^{'(old)}-\eta\cdot\sum^{C}_{c=1}(y_{c,j}-t_{c,j})\cdot h_i\tag{$6$} w(new)=wij(old)ηc=1C(yc,jtc,j)hi(6)
同理权重 W W W的更新规则如下:
w ( n e w ) = w i j ( o l d ) − η ⋅ ∑ j = 1 V ∑ c = 1 C ( y c , j − t c , j ) ⋅ w i j ′ ⋅ x j ( 7 ) w^{(new)} = w_{ij}^{(old)}-\eta\cdot \sum_{j=1}^{V}\sum^{C}_{c=1}(y_{c,j}-t_{c,j})\cdot w_{ij}^{'}\cdot x_j\tag{$7$} w(new)=wij(old)ηj=1Vc=1C(yc,jtc,j)wijxj(7)

从上面的更新规则,我们可以发现,每次更新都需要对整个词汇表求和,因此对于很大的语料库来说,这个计算复杂度是很高的。于是在实际应用中,Google的Mikolov等人提出了分层softmax及负采样可以使得计算复杂度降低很多。

参考文献

[1] Mikolov T, Chen K, Corrado G, et al. Efficient Estimation of Word Representations in Vector Space[J]. Computer Science, 2013.(这篇文章就讲了两个模型:CBOW 和 Skip-gram)
[2] Mikolov T, Sutskever I, Chen K, et al. Distributed Representations of Words and Phrases and their Compositionality[J]. 2013, 26:3111-3119.(这篇文章针对Skip-gram模型计算复杂度高的问题提出了一些该进)
[3] Presentation on Word2Vec(这是NIPS 2013workshop上Mikolov的PPT报告)

  • 73
    点赞
  • 287
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 20
    评论
Skip-gram 是一种用于训练词向量的神经网络模型,它的主要思想是通过一个词预测其周围的上下文词汇,从而得到每个词的词向量表示。具体来说,Skip-gram 模型会将一个文本语料库中的每个词都表示成一个向量,然后通过最大化预测上下文词汇的条件概率来训练这些向量。 在 Skip-gram 模型中,首先需要将语料库中的每个词表示成一个 one-hot 向量,然后将其输入到一个全连接的隐层神经网络中。该神经网络将 one-hot 向量映射到一个较小的向量空间中,其中每个维度对应一个特定的语义属性。经过隐层神经网络的映射,得到了每个词的词向量表示。 在训练过程中,Skip-gram 模型会随机选择一个中心词,并在其周围选取多个上下文词汇。然后,模型会根据这些上下文词汇对应的词向量来预测中心词汇,即最大化条件概率 $P(w_c|w_{c-k},...,w_{c-1},w_{c+1},...,w_{c+k})$。具体来说,模型会将上下文词汇的词向量取平均值,然后将其与中心词汇的词向量进行点积运算,得到一个分数。这个分数可以被解释为预测中心词汇出现在给定上下文词汇中的可能性。 通过反向传播算法,模型可以更新词向量的值,从而提高预测准确度。在训练结束后,每个词都会有一个对应的词向量表示,这些向量可以用于计算词之间的相似性、文本分类、信息检索等任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Roaring Kitty

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值