前言
本文,我们讲述Pandas如何去除重复项的操作,我们选择一个评价数据集来演示如何删除特定列上的重复项,如何删除重复项并保留最后一次出现,以及drop_duplicates的默认用法
方法
DataFrame.drop_duplicates(subset=None, keep='first', inplace=False)
返回值
这个drop_duplicate方法是对DataFrame格式的数据,去除特定列下面的重复行。
返回删除重复行的 DataFrame。 考虑某些列是可选的。索引(包括时间索引)将被忽略。
参数
返回DataFrame格式的数据。
- subset : column label or sequence of labels, optional
用来指定特定的列,默认所有列 - keep : {‘first’, ‘last’, False}, default ‘first’
删除重复项并保留第一次出现的项 - inplace : boolean, default False
是直接在原来数据上修改还是保留一个副本
实验
构建包含拉面评级的数据集
df = pd.DataFrame({
'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'],
'style': ['cup', 'cup', 'cup', 'pack', 'pack'],
'rating': [4, 4, 3.5, 15, 5]
})
数据集数据格式
df
brand style rating
0 Yum Yum cup 4.0
1 Yum Yum cup 4.0
2 Indomie cup 3.5
3 Indomie pack 15.0
4 Indomie pack 5.0
默认情况下,它会根据所有列删除重复的行
df.drop_duplicates()
brand style rating
0 Yum Yum cup 4.0
2 Indomie cup 3.5
3 Indomie pack 15.0
4 Indomie pack 5.0
要删除特定列上的重复项,请使用subset
df.drop_duplicates(subset=['brand'])
brand style rating
0 Yum Yum cup 4.0
2 Indomie cup 3.5
要删除重复项并保留最后一次出现,请使用 keep
df.drop_duplicates(subset=['brand', 'style'], keep='last')
brand style rating
1 Yum Yum cup 4.0
2 Indomie cup 3.5
4 Indomie pack 5.0