- 博客(47)
- 收藏
- 关注
原创 熵最小化Entropy Minimization (二): 案例实施
前面介绍了熵最小化、常用的权重函数汇总、半监督学习:低密度分离假设 (Low-Density Separation Assumption)、标签平滑、信息最大化等相关的知识点,本文采用一个MNIST10分类的数据集来进一步体会它们的效果。
2025-06-10 21:01:14
702
原创 信息最大化(Information Maximization)
信息最大化在目标域无标签的域自适应任务中,它迫使模型在没有真实标签的情况下,对未标记数据产生高置信度且类别均衡的预测。
2025-06-07 23:37:25
947
原创 标签平滑(Label Smoothing)
标签平滑在分类任务比较常用或者默认为交叉熵损失,对提升分类任务的性能有一定的作用。标签平滑促使同一类别训练样本的表示更加聚集,提升了模型的泛化能力。
2025-06-06 14:45:01
846
原创 半监督学习:低密度分离假设 (Low-Density Separation Assumption)
半监督学习(SSL)的目标是借助未标记数据辅助训练,以期获得比仅用带标签的监督学习范式更好的效果。但是,SSL的前提是数据分布需满足某些假设。
2025-06-05 17:37:27
839
原创 常用的权重函数汇总
在一些深度学习任务中,一般会动态调整损失函数中的权重(比如正则化项、多任务学习中的权重等),以便网络逐步学习或者防止梯度震荡。为此,本文收集了一些常用的自适应权重惩罚系数函数。
2025-06-05 13:45:31
641
原创 熵最小化Entropy Minimization (一): 基本认识
熵最小化是一种利用未标记数据提升模型性能的技术,其核心思想是鼓励模型对未标记数据做出确定性更高的预测。
2025-05-30 20:18:12
1090
原创 import模块到另一个文件夹报错:ModuleNotFoundError: No module named xxx
打开项目文件夹my_code,将bb.py的函数或者类import到aa.py中,然后运行aa.py文件,可能会报错。
2025-03-04 20:13:53
268
原创 标准误差Standard Error
若总体标准差σ\sigmaσσXˉσnσXˉnσ式中,nnn是抽样的样本个数。若总体标准差σ\sigmaσσXˉSnσXˉnS式中,SSS是样本标准差。[1]有没有懂统计的,标准误为什么等于标准差除以根号n,求公式推导过程?[2]
2025-02-23 10:00:27
1009
原创 期望与方差主要性质及其证明
在推导一些公式的时候,尤其是做公式变形,经常会用到期望和方差的一些常见性质。例如,向VAE、GAN、diffusion model等需要大量的概率论知识。
2025-02-22 15:43:54
1139
原创 导出svg格式,如何解决虚线变成了实线的问题?
在PPT中画好了图之后,选中-右键另存为svg格式,打开后发现之前绘制的虚线无法正常显示(变成了实线)。
2024-12-07 12:47:19
722
3
原创 什么是域自适应(DA)、域泛化(DG)?
迁移学习的前提是假设源域有大量的标注样本(默认源域有大量带标签的数据),因此可以将源域知识迁移到目标域中。
2024-12-03 14:03:47
715
原创 使用shell脚本运行python程序
在训练深度学习模型时,为了解放生产力,避免手动调参等,一般写成shell脚本的形式,执行一次shell就可以把所有的python程序给运行完毕。
2024-11-24 21:15:17
739
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人