关闭

推荐系统_推荐系统的常用评测指标

1169人阅读 评论(0) 收藏 举报
分类:

为了评估推荐算法的好坏需要各方面的评估指标。


        对用户u推荐N个物品(记为R(u)),令用户u在测试集上喜欢的物品集合为T(u)

  • 准确率
    准确率就是最终的推荐列表中有多少是推荐对了的。描述最终的推荐列表中有多少比例是发生过的用户-物品评分记录。


  • 召回率
    召回率就是推荐对了的占全集的多少。描述有多少比例的用户-物品评分记录包含在最终的推荐列表中。

  • 下图直观地描述了准确率和召回率的含义

  • 覆盖率
    覆盖率表示推荐的物品占了物品全集空间的多大比例。

    最简单的覆盖率的定义如下:


  • 新颖度
    新颖度是为了推荐长尾区间的物品。用推荐列表中物品的平均流行度度量推荐结果的新颖度。如果推荐出的物品都很热门,说明推荐的新颖度较低,否则说明推荐结果比较新颖。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:24301次
    • 积分:443
    • 等级:
    • 排名:千里之外
    • 原创:21篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条