如果你看不懂KMP算法,那就看一看这篇文章( 绝对原创,绝对通俗易懂)

本文通过实例和图表详细解析KMP算法的核心概念,包括next数组的意义及其计算方法,帮助读者快速掌握这一高效的字符串匹配算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果你看不懂KMP算法,那就看一看这篇文章(绝对原创,绝对通俗易懂)

 

KMP算法,俗称“看毛片”算法,是字符串匹配中的很强大的一个算法,不过,对于初学者来说,要弄懂它确实不易。整个寒假,因为家里没有网,为了理解这个算法,那可是花了九牛二虎之力!不过,现在我基本上对这个算法理解算是比较透彻了!特写此文与大家分享分享!

我个人总结了,KMP算法之所以难懂,很大一部分原因是很多实现的方法在一些细节的差异。怎么说呢,举我寒假学习的例子吧,我是看了一种方法后,似懂非懂,然后去看另外的方法,就全都乱了!体现在几个方面:next数组,有的叫做“失配函数”,其实是一个东西;next数组中,有的是以下标为0开始的,有的是以1开始的;KMP主算法中,当发生失配时,取的next数组的值也不一样!就这样,各说各的,乱的很!

所以,在阐述我的理解之前,我有必要说明一下,我是用next数组的,next数组是以下标0开始的!还有,我不会在一些基础的概念上浪费太多,所以你在看这篇文章时必须要懂得一些基本的概念,例如朴素字符串匹配”“前缀后缀等!还有就是,这篇文章的每一个字都是我辛辛苦苦码出来的,图也是我自己画的!如果要转载,请注明出处!好了,开始吧!

假设在我们的匹配过程中出现了这一种情况:

根据KMP算法,在该失配位会调用该位的next数组的值!在这里有必要来说一下next数组的作用!说的太繁琐怕你听不懂,让我用一句话来说明:

返回失配位之前的最长公共前后缀!

好,不管你懂不懂这句话,我下面的文字和图应该会让你懂这句话的意思以及作用的!

首先,我们取之前已经匹配的部分(即蓝色的那部分!)

我们在上面说到next数组的作用时,说到最长公共前后缀,体现到图中就是这个样子!

接下来,就是最重要的了!

没错,这个就是next数组的作用了:

返回当前的最长公共前后缀长度,假设为len。因为数组是由0开始的,所以next数组让第len位与主串匹配就是拿最长前缀之后的第1位与失配位重新匹配,避免匹配串从头开始!如下图所示!

(重新匹配刚才的失配位!)

 

如果都说成这样你都不明白,那么你真的得重新理解什么是KMP算法了!

 

接下来最重要的,也是KMP算法的核心所在,就是next数组的求解!不过,在这里我找到了一个全新的理解方法!如果你懂的上面我写的的,那么下面的内容你只需稍微思考一下就行了!

 

跟刚才一样,我用一句话来阐述一下next数组的求解方法,其实也就是两个字:

继承

a、当前面字符的前一个字符的对称程度为0的时候,只要将当前字符与子串第一个字符进行比较。这个很好理解啊,前面都是0,说明都不对称了,如果多加了一个字符,要对称的话最多是当前的和第一个对称。比如agcta这个里面t的是0,那么后面的a的对称程度只需要看它是不是等于第一个字符a了。

b、按照这个推理,我们就可以总结一个规律,不仅前面是0呀,如果前面一个字符的next值是1,那么我们就把当前字符与子串第二个字符进行比较,因为前面的是1,说明前面的字符已经和第一个相等了,如果这个又与第二个相等了,说明对称程度就是2了。有两个字符对称了。比如上面agctag,倒数第二个anext1,说明它和第一个a对称了,接着我们就把最后一个g与第二个g比较,又相等,自然对称成都就累加了,就是2了。 

c、按照上面的推理,如果一直相等,就一直累加,可以一直推啊,推到这里应该一点难度都没有吧,如果你觉得有难度说明我写的太失败了。

当然不可能会那么顺利让我们一直对称下去,如果遇到下一个不相等了,那么说明不能继承前面的对称性了,这种情况只能说明没有那么多对称了,但是不能说明一点对称性都没有,所以遇到这种情况就要重新来考虑,这个也是难点所在。

如果蓝色的部分相同,则当前next数组的值为上一个next的值加一,如果不相同,就是我们下面要说的!

如果不相同,用一句话来说,就是:

从前面来找子前后缀

1、如果要存在对称性,那么对称程度肯定比前面这个的对称程度小,所以要找个更小的对称,这个不用解释了吧,如果大那么就继承前面的对称性了。

2、要找更小的对称,必然在对称内部还存在子对称,而且这个必须紧接着在子对称之后。

 

如果看不懂,那么看一下图吧!

好了,我已经把该说的尽可能以最浅显的话和最直接的图展示出来了,如果还是不懂,那我真的没有办法了!

说了这么多,下面是代码实现

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define N 100

void cal_next( char * str, int * next, int len )
{
    int i, j;

    next[0] = -1;
    for( i = 1; i < len; i++ )
    {
        j = next[ i - 1 ];
        while( str[ j + 1 ] != str[ i ] && ( j >= 0 ) )
        {
            j = next[ j ];
        }
        if( str[ i ] == str[ j + 1 ] )
        {
            next[ i ] = j + 1;
        }
        else
        {
            next[ i ] = -1;
        }
    }
}

int KMP( char * str, int slen, char * ptr, int plen, int * next )
{
    int s_i = 0, p_i = 0;

    while( s_i < slen && p_i < plen )
    {
        if( str[ s_i ] == ptr[ p_i ] )
        {
            s_i++;
            p_i++;
        }
        else
        {
            if( p_i == 0 )
            {
                s_i++;
            }
            else
            {
                p_i = next[ p_i - 1 ] + 1;
            }
        }
    }
    return ( p_i == plen ) ? ( s_i - plen ) : -1;
}

int main()
{
    char str[ N ] = {0};
    char ptr[ N ] = {0};
    int slen, plen;
    int next[ N ];

    while( scanf( "%s%s", str, ptr ) )
    {
        slen = strlen( str );
        plen = strlen( ptr );
        cal_next( ptr, next, plen );
        printf( "%d\n", KMP( str, slen, ptr, plen, next ) );
    }
    return 0;
}

如果有什么问题,欢迎评论指正!还是大一新手,很需要进步!


KMP(Knuth-Pratt)算法,又称为 Boyer-Moore 模式匹配算法的改进版,是一种用于字符串搜索的高效算法。它主要用于在一个主串中查找是否存在给定的模式串,而不必从头开始逐一比较。 KMP 算法的核心思想是预处理模式串,创建一个叫做「失配表」(failure function or failure link array) 的辅助数组。失配表存储的是当我们在主串上遇到一个不匹配字符时,我们可以跳过多少个字符,使得模式串向前移动到一个更可能匹配的位置,从而减少不必要的比较。 这里是一个简单的步骤说明: 1. 初始化失配表:对于模式串中的每个字符 i(从1开始),失配表 entry[i] 初始设为0(表示如果第一个字符不匹配,则不移动)。对于之后的字符,失配表基于当前字符和前一个失配字符的位置关系计算更新。 2. 如果遇到模式串的第一个字符和主串的一个字符不匹配,我们检查失配表,看之前是否发生过相同的错误。如果有的话,我们跳过失配表对应的位置,而不是立即回溯。 3. 重复这个过程,直到找到匹配的模式串或者遍历完主串。如果找到完全匹配的模式串,返回其起始索引;如果没有找到,表示模式串不存在于主串中。 KMP算法避免了大量的回溯操作,优化了模式匹配过程,特别是在模式串长度远大于主串时,性能显著提高。它的平均时间复杂度为O(m+n),其中m是模式串的长度,n是主串的长度。
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值