矩估计法

本文摘自《概率论与数理统计》 陈希孺著 中国科学技术大学出版社
相关链接
参数的点估计问题
极大似然估计

前言

矩估计法是点估计方法的一种,点估计法还有极大似然估计法和贝叶斯估计法。详情请参考上面的链接。

矩估计法

矩估计法是皮尔逊在19世纪末到20世纪初的一系列文章中引进的。这个方法的思想很简单:设总体分布为 f(x;θ1,,θk) ,则它的矩(原点矩和中心矩都可以,此处以原点矩为例)
连续型:


αm=xmf(x;θ1,,θk)dx

离散型:


αm=i=1nxif(xi;θ1,,θk)

依赖于 θ1,,θk 。另一方面,至少在样本 n 较大时,αm又应接近于样本原点矩 am 。于是


αm=αm(θ1,,θk)am=i=1nXmin

m=1,,k ,并将上面的近似式改成等式,就得到一个方程组:


αm(θ1,,θk)=am,(m=1,,k)

解此方程组,得其根 θi^=θi^(X1,,Xn) (i=1,,k) ,就以 θi^ 作为 θi 的估计 (i=1,,k) 。如果要估计的是 θ1,,θk 的某个函数 g(θ1,,θk) ,则用 ĝ (X1,,Xn)=g(θ1^,,θk^) 去估计它。这样定出的估计量就叫矩估计。

矩估计在各种分布中的应用

正态分布

X1,,Xn 是从正态总体 N(μ,σ2) 中抽出的样本,要估计 μ σ2 μ 是总体的一阶原点矩,按矩估计,用样本的一阶原点矩即样本的均值 X 去估计。 σ2 是总体方差,即总体的二阶中心距,可用样本的二阶的二阶中心矩 m2 去估计。一般地,在估计方差时候常用样本方差 S2 而不用 m2 ,即对矩估计做了一定的修正。
如果要估计的是标准差 σ2 ,则由 σ=σ2 ,按矩估计法,它可以用 m2 去估计,一般用 S2=S 去估计,或者还做点修正。又当 μ0 时,(特别在 μ>0 时,在有些问题中, μ 虽然未知,但事先可知道 μ>0 。比如某个班级的平均成绩,它必然会大于0,因为没有人会考负分,全班也不太可能考0分), σ/μ 称为总体的变异系数,变异系数是以均值为单位去衡量总体的标准差。在有些问题中,反映变异程度的标准差意义如何,要看总体均值 μ 而定。比如一大群人收入的标准差为50元,若其平均工资只有70元,则这个变异系数可算很大了;但若平均工资为850元,则这个变异程度就不算大了。所以,变异系数 σ/μ 不过是一定意义上的“相对误差”,按矩估计法,为估计 σ/μ 可用 m2/X ,一般用 S/X

指数分布

X1,,Xn 是从指数分布总体中抽出的样本,要估计参数 λ 的倒数 1λ 。根据指数分布的特点,我们知道 1λ 就是总体分布的均值,故按矩估计法,就用 X 去估计。如要估计的是参数 λ 本身,就用 1X 去估计。
另一方面,指数分布的方差为 1λ2 ,即 1λ= 。按矩估计法, 1λ 也可以用 m2 (或 S )去估计。

均匀分布

X1,,Xn是从区间 [θ1,θ2] 上均匀分布的总体中抽出的样本,要估计 θ1,θ2
我们知道,均匀分布的均值、方差分别是 (θ1+θ2)2 (θ2θ1)212 。因此,按矩估计法,建立方程


X=(θ1+θ2)2,m2=(θ2θ1)22

得出 θ1,θ2 的解分别为


θ̂ =X̂ 3m2,θ2^=X+3m2 公式(1)

也可以用 S 代替m2

二项分布

设总体有二项分布 B(N,p) X1,,Xn 为从该总体中抽出的样本,要估计 p ,矩估计为X/N
我们知道,


X=Np,m2=Np(1p)

根据上面的式子,我们可以得到 p=X/N ,当然也可用 m2 来求。

泊松分布

设总体有泊松分布 P(λ),X1,,Xn 为从该总体中抽出的样本,要估计 λ
由于 λ 是总体分布的均值,按矩估计法,可用样本均值 X 去估计;另一方面, λ 也是总体分布的方差,故按矩估计法,也可以用 m2 S2 去估计。在这里,用均值 X 为优。在一般的情况下,能用低阶矩处理的就不用高阶矩。

### 回答1: ARMA模型是自回归移动平均模型,其矩估计是一种常用的参数估计方。它的特点如下: 1. 矩估计是一种非常直观的方,比较容易理解和实现。 2. 矩估计是一种无偏估计方,即在样本量充分大的情况下,估计值会无限接近真实值。 3. 矩估计需要计算高阶矩(即三阶及以上),因此数据量要求较高。 4. 矩估计对于参数的初值选择比较敏感,因此需要对初值进行一定的优化和选择。 5. 矩估计对于非线性模型的估计效果一般,因此在复杂非线性模型的估计中不常使用。 总之,矩估计是ARMA模型常用的估计方之一,具有一定的优点和局限性,需要在实际应用中进行权衡和选择。 ### 回答2: ARMA模型矩估计是一种常用的参数估计方,用于估计自回归滑动平均模型(ARMA)的参数。其主要特点如下: 1. 简单易用:ARMA模型矩估计基于样本矩的估计,不需要对数据进行过多的预处理和假设的限制,因此更加简单易用。 2. 无需知道噪声分布:在ARMA模型中,噪声项通常假设为白噪声,但具体噪声分布通常是未知的。而矩估计不依赖于噪声的具体分布,只需要样本矩的计算即可进行参数估计。 3. 一致性:ARMA模型矩估计在样本容量趋于无穷的情况下,可以保证估计值收敛于真值,并且有较好的一致性性质。 4. 近似最优性:当样本容量较大时,ARMA模型矩估计可以近似为最优估计方,即达到最小均方差准则。 5. 适用范围广:ARMA模型矩估计适用于各种不同类型的时间序列数据,包括平稳和非平稳序列,使其具有较广的适应性。 需要注意的是,ARMA模型矩估计也有其局限性,如对数据的要求相对较高,对噪声分布的假设也较为严格。此外,该方对于长期相关性较强的序列可能估计效果不佳。综上所述,ARMA模型矩估计作为一种常用的参数估计方,在时间序列分析中有着一定的优势和适用性。 ### 回答3: ARMA模型是一种常用于时间序列分析的统计模型,它结合了自回归模型(AR)和移动平均模型(MA)的特点。ARMA模型的参数估计可以采用不同的方,其中矩估计是一种常用的估计方。 ARMA模型的矩估计的特点如下: 1. 直观简单:矩估计基于时间序列的矩(wide moments)进行参数的求解,相对于其他复杂的估计方矩估计更加直观简单,易于理解和实施。 2. 无需数据分布假设:矩估计不依赖于数据的具体分布假设,仅使用时间序列的矩信息来估计模型参数。因此,该方对数据的分布假设要求较低,适用于各种类型的时间序列数据。 3. 假设独立性:矩估计通常假设时间序列数据之间是独立的,即不考虑数据之间的相关性。这使得矩估计在处理长时间序列或高相关性数据时可能存在一定的偏差。 4. 求解方简单快速:矩估计通过对矩方程进行求解来估计模型参数,具有计算简单、计算量小、运算速度快的优点。对于参数空间较小的模型,矩估计的效率通常较高。 综上所述,ARMA模型矩估计在参数估计的过程中具有直观简单、无需数据分布假设、假设独立性和求解方简单快速的特点。然而,使用该方应注意数据相关性的问题以及对异常值的敏感性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值