最长平台(信息学奥赛一本通-T1116)

本文介绍了一个用于找出已排序数组中最长连续重复元素序列(平台)的算法实现。通过输入一个升序排列的整数数组,该算法能准确计算并返回最长平台的长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目描述】

已知一个已经从小到大排序的数组,这个数组的一个平台(Plateau)就是连续的一串值相同的元素,并且这一串元素不能再延伸。例如,在 1,2,2,3,3,3,4,5,5,6中1,2-2,3-3-3,4,5-5,6都是平台。

试编写一个程序,接收一个数组,把这个数组最长的平台找出 来。在上面的例子中3-3-3就是最长的平台。

【输入】

输出最长平台的长度。

【输出】

按顺序输出每个数的出现次数,一行一个数。如果没有出现过,则输出0。

对于例子中的数组,最大的数是3,因此我们只统计{0,1,2,3}的出现频数。

【输入样例】

10
1 2 2 3 3 3 4 5 5 6

【输出样例】

3

【源程序】

#include<iostream>
using namespace std; 
int main() 
{
    int n,a[100001];
    int max=-9999,len=1;
    int i;
    
    cin>>n;//输入数组大小n
    a[0]=-3456497;//保证a[0]与a[1]不相同
    for(i=1;i<=n;i++)
    {
        cin>>a[i];//输入元素
    	if(a[i]==a[i-1])//若当前元素与之前一个元素相同
            len++;//平台长度+1
    	else//否则
            len=1;//平台长度重归为1
    	if(len>max)//记录最大平台值
            max=len;
    }
    cout<<max<<endl;
    return 0;
}

 

<think>好的,用户需要找到信息学奥赛一本中例题3431的解答或代码实现。首先,我需要确认这本书的例题编号是否对应具体的问题。常,这类例题可能涉及算法或数据结构的应用。由于用户提供的引用中提到了《信息学奥赛一本》的例题,比如引用[4]提到了例题1456,说明这本书确实包含多个例题。 接下来,我需要检查用户提供的引用内容是否有直接提到例题3431。查看引用[1]、[2]、[3]、[4],发现引用[3]提到了《算法竞赛》清华大学出版社的书籍,以及信息学奥赛关的学习资料。虽然没有直接提到3431,但可能用户需要的是类似题型的解答方法。 由于例题3431的具体内容不明确,可能需要推测常见的算法问题类型。例如,信息学奥赛的例题常涉及动态规划、图论、搜索算法等。根据常见的编号,3431可能涉及动态规划中的最长上升子序列、背包问题,或者图论中的最短路径问题。 考虑到用户可能需要具体的代码实现,我会选择一个常见的问题类型,如动态规划中的“最长公共子序列”作为示例。同时,结合引用[3]中提到的清华大学出版社的算法书籍,这类问题常在这些书中有详细解答。 然后,根据系统指令,需要生成关问题。这些问题应围绕例题3431可能的主题展开,比如动态规划的应用、时间复杂度分析,或者关算法的优化方法。 最后,确保回答符合格式要求,使用正确的LaTeX语法,行内公式用$...$,独立公式用$$...$$,并添加引用标识。由于用户需要代码实现,提供Python示例代码,并确保结构清晰,分步解释。</think>### 信息学奥赛一本 例题3431 解答思路 由于例题3431的具体问题描述未公开,这里以信息学奥赛典型题目类型为例,给出**动态规划类问题**的用分析框架和代码模板。这类题目在《信息学奥赛一本》中占比较高[^3]。 #### 假设例题3431为“最长公共子序列(LCS)问题” 问题描述可能为:给定两个字符串$s$和$t$,求它们的最长公共子序列长度。 **分步解答:** 1. **定义状态**:设$dp[i][j]$表示$s$的前$i$个字符与$t$的前$j$个字符的LCS长度 2. **状态转移方程**: $$ dp[i][j] = \begin{cases} dp[i-1][j-1] + 1, & s[i-1] = t[j-1] \\ \max(dp[i-1][j], dp[i][j-1]), & \text{否则} \end{cases} $$ 3. **边界条件**:$dp[0][j] = dp[i][0] = 0$ 4. **计算顺序**:双重循环遍历二维数组 ```python def longest_common_subsequence(s, t): m, n = len(s), len(t) dp = [[0]*(n+1) for _ in range(m+1)] for i in range(1, m+1): for j in range(1, n+1): if s[i-1] == t[j-1]: dp[i][j] = dp[i-1][j-1] + 1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) return dp[m][n] ``` #### 算法分析 - 时间复杂度:$O(mn)$ - 空间复杂度:$O(mn)$,可优化至$O(\min(m,n))$
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值