——————数论——————
文章平均质量分 87
Alex_McAvoy
想要成为渔夫的猎手
展开
-
数论 —— 整式方程
【概念】整式方程就是方程中所有的未知数均在分子上,分母只是常数且无未知数。通常情况下,常年用字母 x、y、z 来表示未知数,方程中含有几个不同的未知数就叫做几元,未知数的最高次数是几就叫做几次。例如:ax+b=c 就是一个一元一次整式方程【一元一次方程求解】对于方程 ax+b=c,有:x=(c-b)/adouble calculate(double a,double b,...原创 2019-01-19 15:31:18 · 2406 阅读 · 0 评论 -
数论 —— 线性同余方程
【概念】1.不定方程:未知数的个数多于方程个数,且未知数受到某些限制(如要求是整数)的方程。2.同余方程设函数,则称:是关于模 m 的同余方程3.线性:方程的未知数次数是一次4.线性同余方程线性同余方程是最基本的同余方程,形如的未知数是 x 的同余式,其中,a、b 是整数,且【与线性同余方程有关的定理】1.定理1:对于二元一次方程,其等价为,该方程有整...原创 2018-07-31 14:39:18 · 5953 阅读 · 1 评论 -
数论 —— 线性同余方程组与中国剩余定理
【线性同余方程组】由若干个线性同余方程构成的线性方程组。例如:其解法最早由我国《孙子算经》给出,因此解法称为“孙子定理”,又叫“中国剩余定理”,实质即为求多个数的最小公倍数。【中国剩余定理】1.内容设自然数两两互质,并记,则同余方程组:在模 N 同余的意义下,有唯一解:。2.证明考虑方程组:,由于两两互质,对方程组作变量替换,即令故方程组等...原创 2019-09-07 15:36:28 · 1317 阅读 · 0 评论 -
数论 —— 高次同余方程与 BSGS 算法
【概述】BSGS(BabyStepGiantStep)算法,又称大小步算法,其主要用于解形如的高次同余方程中的 x,其核心思想是分块。当 A与 C互质时,通过费马小定理:可知,当时,会出现一个循环节,于是就能保证答案 x若存在,必然有因此,当 C比较小时,可使用暴力,直接令从 0 枚举到 C-1,检验其是否为方程的解,而当 C比较大时,使用暴力会 TLE,...原创 2019-03-20 20:39:07 · 1051 阅读 · 0 评论 -
数论 —— 毕达哥拉斯三元组
【定义】满足的三元组称为毕达哥拉斯三元组,当 时,称其为本原的。毕达哥拉斯三元组,也称为勾股数。【性质】由 x、y、z 构成的三元组 (x,y,z) ,其中 y 为偶数,那么由他们构成的本原的毕达哥拉斯三元组等价于:存在互素的一奇一偶的正整数 m、n,且 m>n,有:,并且可以看出,本原的毕达哥拉斯三元组中,最大的数一定是奇数。特别地,由构成毕达哥拉...原创 2019-03-20 20:02:12 · 3897 阅读 · 0 评论 -
数论 —— 佩尔方程与连分数
【概述】连分数是一种特殊的繁分数,其形式为:,通常记为:,其中 和 称为连分数多项式,对于任意的 a 均为一次式,它们的比值称为第 n 个渐进值渐进分数。佩尔(Pell)方程是一种不定二次方程,其与连分数,二次型,代数论等有着重要的联系。其形式为:,其中 d不为非平方数【佩尔方程迭代公式】定义:设 p、q 为整数,且满足,则称给出该方程的解推论:设给...原创 2019-03-21 17:37:51 · 3624 阅读 · 1 评论 -
数论 —— 逆元
【基本概念】1.完全剩余系:模 m 的完全剩余系是 {0,1,2,...,n-1},记为:Zn,其中每个元素都代表与其同余的整数2.简化剩余系:简化剩余系也称缩系,是模 m 的完全剩余系中与 m 互素的元素,记为:Zn*3.同余等价类:将满足同余关系的所有整数称为同余等价类,Zn 中每个元素就是一个同余等价类4.同余等价类的运算:在同余等价类中,由于每个元素都代表一个同余等价类,因...原创 2018-07-31 14:26:49 · 6140 阅读 · 0 评论 -
数论 —— 快速幂
【概述】快速幂就是利用二进制的性质来快速计算底数的 n 次幂,时间复杂度为 O(log₂N), 与朴素的 O(N) 相比效率有了极大的提高。但有时指数十分大,利用高精来写可能会超时,此时就需要十进制快速幂。【求位数公式】有时仅要求求 2 的 n 次幂的位数,这里有一个神奇的求位数公式:floor(log(2)/log(10)*n+1)double res=n*log10(2)...原创 2018-07-05 01:33:28 · 1354 阅读 · 0 评论 -
数论 —— 整除与同余
【整除】1.定义若qZ, s.t. b=a*q ,则称 b 被 a 整除,记作 a|b,其中,b 是 a 的倍数,a 是b 的约数。2.性质1)若 a|b 且 b|c,则:a|c2)若 a|b 且 a|c,对于x,yZ,有:a|(b*x+c*y)3)若 a|b 且m0,则:(m*a)|(m*b)4)若a|n 且 b|n,当x,yZ,满足...原创 2018-07-30 13:38:22 · 4169 阅读 · 0 评论 -
数论 —— 莫比乌斯反演
【反演】假设我们手头有个数列F,通过某种变换 H,可以得到函数 G。,即:但现在只有函数 G,需要求 F,那么我们就需要寻找一种变换 ,使得 G 在经过这种变换后能够获得 F,这个过程即为反演,即:【整除分块】对于式子:,其时间复杂度为 O(n),当有多组数据时,O(n) 并非正确的时间复杂度,此时有一种时间复杂度为 O(√n) 的算法:整除分块对于每一个通过打表发现,很...原创 2019-04-03 16:17:53 · 923 阅读 · 0 评论 -
数论 —— 最大公约数与最小公倍数
【概念】1.公约数:有 k 个非零整数,若,s.t.,则称 d 为的公约数。2.最大公约数:公约数中最大的一个数称为最大公约数,记为:注: ① 最大公约数一定是存在的,其最小值为 1。 ② 当 GCD=1 时,则称这些数是互质的。 ③ 公约数一定是最大公约数的约数。3.公倍数:有 k 个非零整数,若,s.t.,则称 d 为的公倍数。4.最小...原创 2018-07-30 16:35:22 · 12283 阅读 · 1 评论 -
数论 —— 斐波那契数列(Fibonacci)
【概述】斐波那契数列(Fibonacci sequence),又称黄金分割数列,其指的是这样一个数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368....这个数列从第 3 项开始,每一项都等于前两项之和。斐波那契数列除应用递推、递归...原创 2018-04-23 21:44:02 · 2966 阅读 · 0 评论 -
数论 —— 概述
【概述】数论的研究对象是整数,例如求两个整数的最大公约数、最小公约数,求一个正整数的素数分解,求一个方程的整数解等等,在算法中,快速幂、欧几里得算法、素性判断、大整数取模等内容是经常遇到的。【理论相关】斐波那契数列(Fibonacci):点击这里 快速幂、整除与同余:点击这里 最大公约数与最小公倍数:点击这里 整式方程:点击这里 线性同余方程:点击这里 线性同余方程组与中国剩...原创 2019-03-21 14:19:55 · 1806 阅读 · 3 评论 -
数论 —— 素性测试
【概述】判断素数是一个较常涉及的内容,所谓素性测试是检测一个数是否为素数的测试。素数定理:,其中 π(x) 表示不超过 x 的素数的个数质数分布密度定理:素数的分布越来越稀疏,当 1E18 内的任意两个素数的差不会很大(不会超过 300)【埃拉托斯特尼筛法】初始时,先假设所有数都是素数,从2开始枚举,当找到一个素数时,显然这个素数乘上另外一个数之后都是合数,把这些合数都筛掉,继...原创 2018-08-01 10:45:03 · 3561 阅读 · 0 评论 -
数论 —— 约数
【唯一分解定理】对于任意一个大于 1 的正整数 n,都有且只有一种方式写出其素因子的乘积表达式。即:,其中,均为素数因此,当给出一个数 n 时,可以暴力枚举,以获取 n 的素因子map<int, int> num;//记录素因子个数int factor[N],cntF;//记录素因子void getFactor(int n){ cntF = 0; ...原创 2019-08-10 14:48:39 · 815 阅读 · 0 评论 -
数论 —— 欧拉函数
【定义】对正整数 n,欧拉函数是小于等于 n 的数中与 n 互质的数的个数,记作:例如:,因为 1、3、5、7 均与 8 互质。【性质】1)若 n 为一素数 p,则:2)若 n 为一素数 p 的幂次,则:例如:要求,由于 16=2*2*2*2,故3)若 n 为任意两个互质的数 a、b 的积,则:例如:要求,由于 40=5*8,且 5、8 互质,所以4)...原创 2019-03-20 19:02:03 · 697 阅读 · 0 评论 -
数论 —— 整数分解
【概述】整数分解目前仍是世界级难题,是非常重要的研究方向,其有很多种算法,性能上各有差异,本文仅介绍试除法、Fermat 算法、Pollard Rho 算法。【试除法】试除法也叫穷举法,是整数分解算法中最简单和最容易理解的算法,但也是效率最低的算法。试除法是用小于等于 n 的每个素数去试除待分解的整数,如果找到一个数能够整除除尽,这个数就是待分解整数的因子。试除法一定能够找到 ...原创 2018-08-01 19:32:54 · 17160 阅读 · 0 评论