最高分数的学生姓名(信息学奥赛一本通-T1147)

【题目描述】

输入学生的人数,然后再输入每位学生的分数和姓名,求获得最高分数的学生的姓名。

【输入】

第一行输入一个正整数N(N ≤ 100),表示学生人数。接着输入N行,每行格式:分数 姓名

分数是一个非负整数,且小于等于100;

姓名为一个连续的字符串,中间没有空格,长度不超过20。

数据保证最高分只有一位同学。

【输出】

获得最高分数同学的姓名。

【输入样例】

5
87 lilei
99 hanmeimei
97 lily
96 lucy
77 jim

【输出样例】

hanmeimei

【源程序】

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
using namespace std;

struct student
{
    string name;
    int score;
} a[100];

int main()
{
    int n;
    int i,j;

    cin>>n;//输入学生数
    for(i=0; i<n; i++)
    {
        cin>>a[i].score;//输入分数
        cin>>a[i].name;//输入姓名
    }

    for(i=0; i<n-1; i++) //冒泡排序
        for(j=0; j<n-1-i; j++)
            if(a[j].score<a[j+1].score)
                swap(a[j],a[j+1]);

    cout<<a[0].name<<endl;
    return 0;
}

 

hierarchical-graph-attention-network-master是一个使用分层图注意力网络(Hierarchical Graph Attention Network)进行训练和预测的项目。该项目主要针对一种特定的据集。 该据集可以是一个图据集,其中包含多个节点和边,每个节点代表一个实体或对象,每个边代表节点之间的关系或连接。 具体来说,据集可能包含以下内容: 1. 节点信息:每个节点具有一些特征或属性,描述了节点的性质。这些特征可以是结构性的,如节点的ID或位置,也可以是属性性的,如节点的词向量表示或其他自定义的特征描述。 2. 边信息:每个边包含了节点之间的连接关系或关联性。这些关系可以是有向的或无向的,可以是带权重的或不带权重的。比如,在社交网络中,节点可以表示人,边可以表示朋友关系,权重可以表示亲密程度。 3. 层次结构:据集可能包含多个层次结构,即节点可以按照一定的层次结构进行组织和分组。比如,在一张包含人和城市的图中,可以将人节点按照所属城市进行分组,形成一个城市层次和一个人层次。 Hierarchical Graph Attention Network可以在这样的据集上进行训练和预测。它过层次结构和图注意力机制来捕捉节点之间的结构信息和特征关联。在训练过程中,网络会学习到不同层次和节点之间的重要性权重,从而在预测任务中能够更好地利用据集中的信息。 这样,利用hierarchical-graph-attention-network-master项目,我们可以对给定的图据集进行分层建模和预测,从而有效利用节点之间的结构和关联信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值