关闭

BUPTTeam Participation in NTCIR-12 Short Text Conversation Task

系统架构为:1.1预处理首先对多有的对话对进行文本处理,如繁体转换为简体,过滤特殊字符,英文字符,数字处理等,并对处理好的文本进行分词处理.1.2建立索引使用Elasticsearch方法1.3生成候选query由Elasticsearch方法得到top10个候选的query,再有得到的query通过Elasticsearch算法得到对应的10个response,Elasticsearch算法:对于...
阅读(8) 评论(0)

QRNN(Quasi-Recurrent Neural Networks)

keras代码:https://github.com/DingKe/qrnn模型结构如下: qrnn第一层为卷积层,用于提取输入特征,第二层为pooling层,用于减少特征数目,但语常用的pooling层不同的是,qrnn采用fo-pool方法,具体计算如下.卷积层:对于输入X,分别通过三个卷积层和非线性层得到Z,F,O,公式如下:Z=tanh(Wz∗X)Z=tanh(W_z*X)F=σ(Wf∗X...
阅读(5) 评论(0)

Dialog System Using Real-Time Crowdsourcing and Twitter Large-Scale Corpus

聊天系统结构如下: (1)从web爬取料聊天语料,制作聊天对话,即Utterance Pair Corpus.(2)用户输入聊天语句,即user input,将user input与(1)中的聊天语句匹配,当匹配置信度大于某一阈值时,得到最佳的匹配作为回答,即response.计算与输入最相似的句子作为回答,首先计算每个句子d的词wi的向量表示:xi=tfi/nix_i=tf_i/n_itfitf...
阅读(5) 评论(0)

Topic Aware Neural Response Generation

tase2seq模型整体模型结果图如下: 图2给出了topic avare seq2seq模型,该模型在seq2seq的基础上,通过一个联合attenton机制和一个偏置生成概率引入topic 信息.topic word的获取采用twitter lda模型,每个输入语句x,对应一个topic z,对于topic z,语句x中语该topic有关的字有n个,取n=100,表示为K,利用输入语句x,to...
阅读(7) 评论(0)

fnlp

分词效果测试:fnlp-demo/src/main/java/org.fnlp.demo.nlp/ChineseWordSegmentation.javamsr: pku: cityu:词性标注测试:fnlp-demo/src/main/java/org.fnlp.demo.nlp/PartsOfSpeechTag.java发现出现明显词性标注错误,如部分标点符号错标为名词,动词,例如:词 长/...
阅读(9) 评论(0)

Scaling SGD Batch Size to 32K for ImageNet Training

Scaling SGD Batch Size to 32K for ImageNet Training为了充分利用GPU计算,加快训练速度,通常采取的方法是增大batch size.然而增大batch size的同时,又要保证精度不下降,目前的state of the art 方法是等比例与batch size增加学习率,并采Sqrt Scaling Rule,Linear Scaling Rule...
阅读(14) 评论(0)

实时语义分割--ICNet for Real-Time Semantic Segmentation on High-Resolution Images

ICNet语义分割算法...
阅读(20) 评论(0)

Deep Bilateral Learning for Real-Time Image Enhancement

模型结构为:low resolutioion 图像特征提取1 low-lever features如上图所示,利用nSn_S个卷积(4层,卷积核为3×33\times3,stride=2),从low-resolution图像中提取低层特征SiS^i:,公式如下: 式中,I=1,...,nSI=1,...,n_S为每个卷积层的索引,c,c′c,c'为为卷积层的channels的索引.w′w'为卷积核...
阅读(20) 评论(0)

ValueError: Shape must be rank 0 but is rank 1 for 'train_data/ReadFile' (op: 'ReadFile') with input

使用函数tf.train.slice_input_producer读取文件时,input_queue = tf.train.slice_input_producer( [flist], shuffle=self.shuffle, seed=0123, num_epochs=self.num_epochs) input_file = tf.read_fi...
阅读(35) 评论(0)

pip install出错 not a trusted or secure host解决方案

使用sudo pip install packname时会提示错误:The repository located at http://mirrors.aliyun.com** is not a trusted or secure host and is being ignored. If this repository is available via HTTPS it is recommended...
阅读(23) 评论(0)

caffe学习笔记-模型代码生成.prototxt文件

caffe学习笔记-模型代码生成.prototxt文件...
阅读(16) 评论(0)

tensorflow学习笔记-卷积,反卷积,空洞卷积

tensorflow学习笔记-卷积,反卷积,空洞卷积...
阅读(13) 评论(0)

ubuntu16.04 安装matlab2014a

下载matlab安装包和破解文件:http://pan.baidu.com/s/1qYJ9tNm 下载解压,得到文件包括:Crack 和 MATHWORKS_R2014A.iso将.iso文件挂载到linux:mkdir matlabsudo mount -o loop matlab2014a\ linux/MATHWORKS_R2014A.iso matlab/进入挂载目录,安装:cd mat...
阅读(9) 评论(0)

caffe 学习笔记-模型训练与测试

以LeNet 手写字体识别为例,首先进入caffe安装目录,并下载手写字体训练数据:cd $CAFFE_ROOT sudo ./data/mnist/get_mnist.sh将图片转换成lmdb文件:sudo ./examples/mnist/create_mnist.sh 运行后得到 mnist_train_lmdb和mnist_test_lmdb./examples/mnist/lenet_so...
阅读(18) 评论(0)

caffe 学习笔记-prototxt文件定义与读取

caffe 学习笔记-prototxt文件定义与读取caffe中,模型定义在.prototxt文件中,文件中定义了每层的结构信息....
阅读(18) 评论(0)
74条 共5页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:12407次
    • 积分:843
    • 等级:
    • 排名:千里之外
    • 原创:74篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条