Check failed: status == CUDNN_STATUS_SUCCESS (4 vs 0)

将prototxt文件,如deploy.prototxt中的行, #engine: CAFFE 的#去掉, engine: CAFFE

2018-12-12 14:57:34

阅读数:31

评论数:0

caffe ssd精度评价

可以参考,https://github.com/intel/caffe/blob/master/models/intel_optimized_models/ssd_mobilenet/fp32_acc.prototxt

2018-12-10 14:07:15

阅读数:34

评论数:0

半监督训练方法--mean teachers are better role models

本文采用两个网络进行训练,连个网络模型结构一样,分别命名为teacher,student网络。student网络参数根据损失函数梯度下降法更新得到;teacher网络参数通过student网络的参数迭代得到。 训练数据: 有标签样本x1,y1,以及无标签样本x2. 训练策略: 将有标签数据x1,y...

2018-11-14 11:30:41

阅读数:133

评论数:1

image caption学习笔记

show and tell cnn-lstm结构,cnn部分采用vgg,使用的是vgg的fc2层作为输出图片特征。得到图片特征后,将其输入一个线性层(CNN),得到x−1x_{-1}x−1​作为第一个lstm的输入,对于输入句子的每个字sts_{t}st​,将其与权重参数wew_ewe​相乘,输出...

2018-11-01 18:15:32

阅读数:44

评论数:0

MTCNN-Tensorflow

git clone https://github.com/AITTSMD/MTCNN-Tensorflow mtcnn为一个多任务训练,物体框和特征点数据分别为两个数据集, 数据集1标记里物体框位置,因此只用与训练物体检测。 数据集2标记有物体框,特征点,用于训练特征点。 输入数据每行分别为, p...

2018-11-01 18:10:30

阅读数:238

评论数:1

ubuntu安装lrzsz以及使用sz,rz上次下载文件

安装过程: 下载与编译、安装, wget http://www.ohse.de/uwe/releases/lrzsz-0.12.20.tar.gz tar zxvf lrzsz-0.12.20.tar.gz && cd lrzsz-0.12.20 ....

2018-10-23 11:02:32

阅读数:116

评论数:0

将本地代码上传到gitlab

首先进入要上传代码的目录,例如,我要将test文件夹下的代码上传到gitlab,则, cd test 通常需要创建README.md文件, echo "# test" >> README.md 执行git命...

2018-03-25 15:59:19

阅读数:7249

评论数:2

tensorflow model server 回归模型保存与调用方法

安装tensorfow model server: 安装依赖包, sudo apt-get update && sudo apt-get install -y \ build-essential \ curl ...

2018-03-25 15:24:49

阅读数:1869

评论数:0

AttributeError: 'module' object has no attribute 'select'

使用tf.select函数出现错误, AttributeError: ‘module’ object has no attribute ‘select’ 这是因为当前版本tensorflow无tf.select函数,可以改为使用函数tf.where

2018-03-21 19:09:42

阅读数:476

评论数:0

libstdc++.so.6: version `GLIBCXX3.4.22' not found

使用tensorflow model server时,出现错误, libstdc++.so.6: version `GLIBCXX3.4.22’ not found 这是因为当前版本的libstdc++.so.6缺少GLIBCXX_3.4.22.查看当前版本的GLIBCXX命令为, st...

2018-03-21 19:07:56

阅读数:2958

评论数:0

图像相似度计算-kmeans聚类

关于图像相似度,主要包括颜色,亮度,纹理等的相似度,比较直观的相似度匹配是直方图匹配.直方图匹配算法简单,但受亮度,噪声等影响较大.另一种方法是提取图像特征,基于特征进行相似度计算,常见的有提取图像的sift特征,再计算两幅图像的sift特征相似度.对于不同的图像类型,也可以采用不同的特征,例如对...

2018-03-11 10:05:55

阅读数:3474

评论数:0

nnpack 安装与使用

安装ninja, sudo apt-get install ninja-build || brew install ninja 安装PeachPy, sudo pip install --upgrade git+https://github.com/Maratyszcza/PeachPy...

2018-03-04 16:21:12

阅读数:556

评论数:0

Face Aging with Contextual Generative Adversarial Nets

网络结构如图2所示,首先按照68个人脸特征点对输入图像进行对齐,之后,采用Deeplab v2算法将输入图像分割为 人脸区域,和非人脸区域,并将非人脸区域标记为灰色. 生成网络-Transformer network 将处理后的图像,与年龄lable yyy输入到条件变换网络(G,Tra...

2018-02-10 15:06:45

阅读数:255

评论数:0

mxnet-im2rec.py文件训练数据生成方法

生成list文件 python /home/research/tools/incubator-mxnet/tools/im2rec.py –list 1 –recursive 1 –train-ratio 0.9 eye eye/ 输入参数含义: –list:当要生成list文件时,这个参数...

2018-01-30 19:13:52

阅读数:362

评论数:0

Decoupled Learning for Conditional Adversarial Networks

文章提出里在已有的ED+GAN的基础上,添见一个生成网络,即ED//GAN,网络结构如下, 上图中左边为传统的GAN网络,Enc+Dec相当于生成网络,D为判别网络,构造GAN损失函数,以及生成图片与输入的重构误差(L1损失函数,这种网络结构我们熟悉的有pix2pix,cyclegan. ...

2018-01-26 20:54:51

阅读数:238

评论数:0

EffNet: An Efficient Structure for Convolutional Neural Networks

EffeNet对MoblieNet网络进行改进,主要思想为: 首先,将MoblieNet的3×33\times3的depthwise convolution层分解为两个3×13\times1,1×31\times3depthwise convolution层.这样便可以在第一层之后就采用pool...

2018-01-23 18:33:56

阅读数:404

评论数:0

python文件创建,删除,移动,复制,重命名

os.sep 可以取代操作系统特定的路径分隔符。windows下为 '\\' os.name 字符串指示你正在使用的平台。比如对于Windows,它是'nt',而对于Linux/Unix用户,它是 'posix' os.getcwd() 函数得到当前工作目录,即当前Python脚...

2018-01-21 19:02:06

阅读数:5365

评论数:0

CoGAN

文章的思想是,利用网络层的权重共享约束,训练GAN网络.模型包括两个生成网络,两个判别网络, 训练数据为不成对的两个域Domain1,Domain2的图片,我们希望的是训练的两个生成网络g1,g2能够在输入向量z相同的情况下,生成的图片高频信息相同,低频信息不同.因此在觉得高频特征的生成网络...

2018-01-21 18:58:51

阅读数:877

评论数:0

Masking GAN

github代码:https://github.com/tgeorgy/mgan文章的创新点:1.生成网络输入x,输出包括分割模板mask,和中间图像y,根据mask将输入x与中间图像y结合,得到生成图像.这样得到的生成图像背景与输入x相同,前景为生成部分.2.采用端到端训练,在cyclegan损...

2018-01-14 16:43:46

阅读数:799

评论数:0

FACE AGING WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS

文章用于生成不同年龄的图片,采用的模型是条件对抗网络,主要创新点是,首先通过一个网络,提取图像特征向量,并通过身份保持网络,优化图像的特征向量,特到特征向量z∗z^*,之后便可以对于每个输入年龄,查找其年龄向量,并将该年龄向量与输入图片特征向量z∗z^*串联,输入生成网络,生成目标年龄图片.特征向...

2018-01-11 18:26:53

阅读数:691

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭