排序:
默认
按更新时间
按访问量

将本地代码上传到gitlab

首先进入要上传代码的目录,例如,我要将test文件夹下的代码上传到gitlab,则, cd test 通常需要创建README.md文件, echo "# test" >> README.md 执行git命...

2018-03-25 15:59:19

阅读数:2282

评论数:0

tensorflow model server 回归模型保存与调用方法

安装tensorfow model server: 安装依赖包, sudo apt-get update && sudo apt-get install -y \ build-essential \ curl ...

2018-03-25 15:24:49

阅读数:994

评论数:0

AttributeError: 'module' object has no attribute 'select'

使用tf.select函数出现错误, AttributeError: ‘module’ object has no attribute ‘select’ 这是因为当前版本tensorflow无tf.select函数,可以改为使用函数tf.where

2018-03-21 19:09:42

阅读数:149

评论数:0

libstdc++.so.6: version `GLIBCXX3.4.22' not found

使用tensorflow model server时,出现错误, libstdc++.so.6: version `GLIBCXX3.4.22’ not found 这是因为当前版本的libstdc++.so.6缺少GLIBCXX_3.4.22.查看当前版本的GLIBCXX命令为, st...

2018-03-21 19:07:56

阅读数:1145

评论数:0

图像相似度计算-kmeans聚类

关于图像相似度,主要包括颜色,亮度,纹理等的相似度,比较直观的相似度匹配是直方图匹配.直方图匹配算法简单,但受亮度,噪声等影响较大.另一种方法是提取图像特征,基于特征进行相似度计算,常见的有提取图像的sift特征,再计算两幅图像的sift特征相似度.对于不同的图像类型,也可以采用不同的特征,例如对...

2018-03-11 10:05:55

阅读数:1567

评论数:0

nnpack 安装与使用

安装ninja, sudo apt-get install ninja-build || brew install ninja 安装PeachPy, sudo pip install --upgrade git+https://github.com/Maratyszcza/PeachPy...

2018-03-04 16:21:12

阅读数:261

评论数:0

Face Aging with Contextual Generative Adversarial Nets

网络结构如图2所示,首先按照68个人脸特征点对输入图像进行对齐,之后,采用Deeplab v2算法将输入图像分割为 人脸区域,和非人脸区域,并将非人脸区域标记为灰色. 生成网络-Transformer network 将处理后的图像,与年龄lable yyy输入到条件变换网络(G,Tra...

2018-02-10 15:06:45

阅读数:148

评论数:0

mxnet-im2rec.py文件训练数据生成方法

生成list文件 python /home/research/tools/incubator-mxnet/tools/im2rec.py –list 1 –recursive 1 –train-ratio 0.9 eye eye/ 输入参数含义: –list:当要生成list文件时,这个参数...

2018-01-30 19:13:52

阅读数:200

评论数:0

Decoupled Learning for Conditional Adversarial Networks

文章提出里在已有的ED+GAN的基础上,添见一个生成网络,即ED//GAN,网络结构如下, 上图中左边为传统的GAN网络,Enc+Dec相当于生成网络,D为判别网络,构造GAN损失函数,以及生成图片与输入的重构误差(L1损失函数,这种网络结构我们熟悉的有pix2pix,cyclegan. ...

2018-01-26 20:54:51

阅读数:138

评论数:0

EffNet: An Efficient Structure for Convolutional Neural Networks

EffeNet对MoblieNet网络进行改进,主要思想为: 首先,将MoblieNet的3×33\times3的depthwise convolution层分解为两个3×13\times1,1×31\times3depthwise convolution层.这样便可以在第一层之后就采用pool...

2018-01-23 18:33:56

阅读数:179

评论数:0

python文件创建,删除,移动,复制,重命名

os.sep 可以取代操作系统特定的路径分隔符。windows下为 '\\' os.name 字符串指示你正在使用的平台。比如对于Windows,它是'nt',而对于Linux/Unix用户,它是 'posix' os.getcwd() 函数得到当前工作目录,即当前Python脚...

2018-01-21 19:02:06

阅读数:1773

评论数:0

CoGAN

文章的思想是,利用网络层的权重共享约束,训练GAN网络.模型包括两个生成网络,两个判别网络, 训练数据为不成对的两个域Domain1,Domain2的图片,我们希望的是训练的两个生成网络g1,g2能够在输入向量z相同的情况下,生成的图片高频信息相同,低频信息不同.因此在觉得高频特征的生成网络...

2018-01-21 18:58:51

阅读数:410

评论数:0

Masking GAN

github代码:https://github.com/tgeorgy/mgan文章的创新点:1.生成网络输入x,输出包括分割模板mask,和中间图像y,根据mask将输入x与中间图像y结合,得到生成图像.这样得到的生成图像背景与输入x相同,前景为生成部分.2.采用端到端训练,在cyclegan损...

2018-01-14 16:43:46

阅读数:403

评论数:0

FACE AGING WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS

文章用于生成不同年龄的图片,采用的模型是条件对抗网络,主要创新点是,首先通过一个网络,提取图像特征向量,并通过身份保持网络,优化图像的特征向量,特到特征向量z∗z^*,之后便可以对于每个输入年龄,查找其年龄向量,并将该年龄向量与输入图片特征向量z∗z^*串联,输入生成网络,生成目标年龄图片.特征向...

2018-01-11 18:26:53

阅读数:410

评论数:0

Ordinal Regression with Multiple Output CNN for Age Estimation

文献提出了结合CNN和回归进行年龄预测的端到端的深度学习网络,网络结构图如下,输入为60×60×360\times60\times3的图像,网络的前三层为三个卷积层,前两个卷积层为convolution+relu+batchnorm+pooling,第三个卷积层为convolution+relu+...

2018-01-05 19:55:47

阅读数:540

评论数:0

caffe.Classifier

gender_net = caffe.Classifier(network, pretrained_model, channel_swap=(2, 1, 0), ...

2018-01-03 19:00:09

阅读数:181

评论数:0

invertible Conditional GANs for image editing

github代码为https://github.com/Guim3/IcGAN通常GAN的生成网络输入为一个噪声向量z,文献的创新点是,利用一个encoder网络,对输入图像提取得到一个特征向量z,将特征向量z,以及需要转换的目标attribute向量y串联输入生成网络,得到生成图像,网络结构如下...

2018-01-01 15:51:59

阅读数:194

评论数:0

caffe loss layers

1.Softmax 类型(type):SoftmaxWithLoss(广义线性回归分析损失层) Softmax Loss Layer计算的是输入的多项式回归损失(multinomial logistic loss of the softmax of its inputs)2.Sum-of-Squa...

2018-01-01 15:02:54

阅读数:162

评论数:0

SqueezeNet猫狗识别

caffe训练数据准备新建data存放训练数据,test_data存放测试数据,data,test_data目录下新建每个类别对应的文件夹,用于存放每个类别的图片,例如,分为cat,dog两类,则分别新建目录cat,dog,/home/data/cat /home/data/dog/home//...

2017-12-30 13:43:18

阅读数:695

评论数:0

Age and gender estimation based on Convolutional Neural Network and TensorFlow

训练数据处理imdb数据提取gender: 0 for female and 1 for male, NaN if unknownage: 年龄分为101类,分别为从0到100岁.将训练数据转换为tfrecords格式,命令为,python convert_to_records_multiCPU...

2017-12-30 13:07:13

阅读数:346

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭