tensorflow学习笔记
文章平均质量分 52
imperfect00
如果有梦想不去坚持实现,就是空想。
展开
-
tf.cocat Expected int32, got list containing Tensors of type '_Message' instead.
tensorflow 函数tf.cocat([fw,bw],2)出错:Expected int32, got list containing Tensors of type '_Message' inst查看原因是11版本的函数形式为:tf.concat(2,[fw,bw]),即应把串联的维度与串联值位置调换即可.原创 2017-03-04 16:02:38 · 1840 阅读 · 0 评论 -
MTCNN-Tensorflow
git clone https://github.com/AITTSMD/MTCNN-Tensorflowmtcnn为一个多任务训练,物体框和特征点数据分别为两个数据集,数据集1标记里物体框位置,因此只用与训练物体检测。数据集2标记有物体框,特征点,用于训练特征点。输入数据每行分别为,path to image, cls_label, bbox_label, landmark_label...原创 2018-11-01 18:10:30 · 3289 阅读 · 6 评论 -
AttributeError: 'module' object has no attribute 'select'
使用tf.select函数出现错误,AttributeError: ‘module’ object has no attribute ‘select’这是因为当前版本tensorflow无tf.select函数,可以改为使用函数tf.where原创 2018-03-21 19:09:42 · 3469 阅读 · 0 评论 -
tensorflow model server 回归模型保存与调用方法
安装tensorfow model server:安装依赖包,sudo apt-get update && sudo apt-get install -y \ build-essential \ curl \ libcurl3-dev \ git \ libfreetype6-dev \ ...原创 2018-03-25 15:24:49 · 5280 阅读 · 0 评论 -
tensorflow学习笔记--tf.one_hot
tf.one_hot输入参数为:one_hot( indices, depth, on_value=None, off_value=None, axis=None, dtype=None, name=None)1.如果indices为一个数值,则tf.one_hot返回值为一个长度为depth的向量.2.如果indices为一个长度为feat原创 2017-11-05 13:08:03 · 2712 阅读 · 0 评论 -
caffe 模型转tensorflow
下载模型转换代码:git clone https://github.com/ethereon/caffe-tensorflowcaffe-tensorflow模型转换文件为convert.py,可以将caffe的模型定义文件.prototxt和训练好的模型分别转换为tensorflow类,和tensorflow模型文件.在example文件夹下提供了examples/minist和examples/原创 2017-09-11 19:56:41 · 8446 阅读 · 0 评论 -
tensorflow 多gpu训练
当使用多个gpu训练时,输入数据为batch_size*num_gpu,这样模型训练时间可以大大较小.tensorflow中使用制定gpu可以通过tf.device()实现.例如我想使用0号显卡:gpu_ind=0with tf.device("/gpu:{}".format(gpu_ind))下面介绍一下多gpu模型训练.代码参考自OpenSeq2Seq:https://github.com/N原创 2017-09-17 16:28:01 · 7980 阅读 · 0 评论 -
tensorflow参数初始化--identity initializtion
卷积层权重初始化的时候,通常有以下几种方法:1.Random Uniform distribution函数为:class RandomUniform(Initializer): """Initializer that generates tensors with a uniform distribution. Args: minval: A python scalar or a sca原创 2017-09-08 11:54:11 · 1825 阅读 · 0 评论 -
tensorflow保存部分变量
tensorflow模型保存函数为:saver = tf.train.Saver()查看该函数初始化函数,输入参数为: def __init__(self, var_list=None, reshape=False, sharded=False, max_to_ke原创 2017-08-03 17:50:21 · 2619 阅读 · 0 评论 -
tensorflow模型量化
量化简单来说就是将32浮点数近似地用8位整数存储和计算,量化后,模型占用存储空间减小75%,起到了压缩模型的效果.关于量化的具体原理可以参考:http://fjdu.github.io/machine/learning/2016/07/07/quantize-neural-networks-with-tensorflow.html,对量化的原理有详细说明,这里不再赘述.由于按照http:/原创 2017-08-05 21:55:36 · 21915 阅读 · 0 评论 -
源码安装tensorflow
下载tensorflow:git clonehttps://github.com/tensorflow/tensorflow安装python依赖库:sudo apt-get install python-numpy python-dev python-pip python-wheel如果是安装tensorflow for python3,则为: sudo apt-ge原创 2017-08-05 16:42:43 · 14846 阅读 · 0 评论 -
tensorflow模型保存文件分析
tensorflow模型保存函数为:tf.train.Saver()例如下列代码:import tensorflow as tfv1= tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="v1")v2= tf.Variable(tf.zeros([200]), name="v2")v3= tf.Variab原创 2017-08-10 17:21:37 · 11946 阅读 · 0 评论 -
ValueError: Shape must be rank 0 but is rank 1 for 'train_data/ReadFile' (op: 'ReadFile') with input
使用函数tf.train.slice_input_producer读取文件时,input_queue = tf.train.slice_input_producer( [flist], shuffle=self.shuffle, seed=0123, num_epochs=self.num_epochs)input_file = tf.read_fi原创 2017-08-17 17:07:19 · 15524 阅读 · 0 评论 -
tensorflow学习笔记-卷积,反卷积,空洞卷积
tensorflow学习笔记-卷积,反卷积,空洞卷积原创 2017-08-16 18:05:38 · 4217 阅读 · 0 评论 -
查看已安装tensorflow版本
由于tensorflow版本不同,可能一些函数的调用也有变换,这时候可能需要查看tensorflow版本,可以在终端输入查询命令如下:pythonimport tensorflow as tftf.__version__查询tensorflow安装路径为:tf.__path__查询结果如下:原创 2017-08-07 20:40:23 · 424490 阅读 · 0 评论 -
tensorflow 加载部分变量
tensorflow模型保存为saver = tf.train.Saver()函数,saver.save()保存模型,代码如下:import tensorflow as tfv1= tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="v1")v2= tf.Variable(tf.zeros([200]), name="原创 2017-08-07 16:01:44 · 10021 阅读 · 0 评论 -
tensorflow学习笔记
tensorflow变量复制,索引原创 2017-01-08 14:15:23 · 4824 阅读 · 0 评论 -
image caption学习笔记
show and tellcnn-lstm结构,cnn部分采用vgg,使用的是vgg的fc2层作为输出图片特征。得到图片特征后,将其输入一个线性层(CNN),得到x−1x_{-1}x−1作为第一个lstm的输入,对于输入句子的每个字sts_{t}st,将其与权重参数wew_ewe相乘,输出作为lstm的输入,模型结构如下,inference有两种方法得到输出,一种是直接去概率最大...原创 2018-11-01 18:15:32 · 1257 阅读 · 0 评论