关闭

【caffe】配置matlab接口(含安装matlab)----matcaffe

安装matlab2014a1.从http://pan.baidu.com/s/1qYJ9tNm 下载matlab2014a,解压文件matlab 得到.iso文件(7.7G)2.将iso文件挂载到Linux,sudo mkdir /media/matlab mount -o loop [path][filename].iso /media/matlab (ps:[path][filename]...
阅读(11) 评论(0)

【caffe】配置python接口----pycaffe

1.安装python(系统默认自带python27,若需要安装 :sudo apt-get install python-dev)2.安装python依赖,进入到caffe/python中,打开命令窗,输入命令: for req in (catrequirements.txt);dosudopipinstall(cat requirements.txt); do sudo pip install...
阅读(32) 评论(0)

【caffe】 Check failed: error == cudaSuccess (30 vs. 0) unknown error

解决办法 : 加 sudo用caffe,不报错,那一定要的时假caffe. ubuntu16.04 ,写了一个.py文件调用resnet.caffemodel 来对图片进行分类. 但是在运行时出错,错误是...略 layer { name: "prob" type: "Softmax" bottom: "fc2" top: "prob" } I1122 13:37:10.8868...
阅读(28) 评论(0)

【caffe】caffe采用multistep,绘制loss曲线出错

先贴错误: list index out of range~那么应该是某个地方的数据缺失,有标号,但相应数据找不到. 问题就出在,采用multistep时,log里会多出这么一行:I1114 21:40:12.195529 12199 sgd_solver.cpp:46] MultiStep Status: Iteration 10000, step = 1在解析log文件时,导致 test的...
阅读(34) 评论(0)

【caffe】ubuntu16.04+CUDA8.0+OpenCV3.0+Caffe 安装记录

上周安装环境,遇到各种问题,重装系统共计四次!记录一下安装过程,方便以后配置新机器 显卡:GTX1080 系统 ubuntu 16.04 LTS 驱动:Nvidia-384.xx opencv3.0这里只配置opencv,没有配置python和matlab,后期会补上流程。 流程:1.安装显卡驱动。2.安装cuda。3.cuDNN。 4.opencv 。5.caffe期间会涉及 GCC...
阅读(36) 评论(0)

Resnet-18-训练实验-warm up操作

实验数据:cat-dog 二分类,训练集:19871 验证集:3975 实验模型:resnet-18 batchsize:128*2 (一个K80吃128张图片)存在的问题: 对训练集 accuracy可达0.99 loss=1e-2 -3,然而验证集 accuracy 0.5,loss 很高,试了多个初始学习率(0.1 — 0.0001)都不行解决上述问题: 采取warm up方法 ,对上述...
阅读(382) 评论(0)

【机器学习-西瓜书】九、K-means;聚类算法划分

推荐阅读: 原型聚类;聚类划分;K-means9.4 原型聚类原型聚类亦称基于原型聚类(prototype-based clustering),原型指的是样本空间中具有代表性的点。基于原型的定义是每个对象到该簇的原型的距离比到其他簇的原型的距离更近。在K-means中,聚类中心就是原型,就是具有代表性的点,一个样本距离哪一个原型近,就划分为哪一簇。 常见的原型聚类算法有: K-means;LVQ(...
阅读(234) 评论(0)

【机器学习-西瓜书】九、聚类:性能度量;距离计算

关键词:性能度量;距离计算;VDM9.1聚类任务聚类任务是无监督学习任务,我们只需要有样本,而不需要有标签。聚类试图将数据集中的样本划分为若干个子集,每个子集称为一个簇(cluster)。簇其实就是类,一簇就是一类。而没有标签,聚类算法把样本划分到不同的簇,算法是没办法告诉我们这些簇具体代表什么意思。所以,聚类算法仅能形成簇的结构,簇所对应的概念语义需要人为的把握和命名。 由于没有类别标签,聚类算...
阅读(337) 评论(0)

【机器学习-西瓜书】八、集成学习:结合策略;多样性;总结

推荐阅读: 总结;绝对多数投票法;误差-分歧分解8.4 结合策略关键词: 平均法;投票法;学习法;硬投票;软投票一开始就说到,集成学习有两个关键,第一,个体学习器;第二,结合策略。对于个体学习器,通常分串行(boosting)和并行(bagging)的方法构建。有了一组学习器,如何把它们结合起来使用呢?这就设计到结合策略,通常有:简单平均法;投票法;学习法。8.4.1 平均法 对于数值输出(回归...
阅读(306) 评论(0)

【机器学习-西瓜书】八、Bagging;随机森林(RF)

8.3 Bagging 与 随机森林关键词: Bagging ; 随机森林;8.3.1 Bagging上上一节已经提到,集成学习首要任务就是要解决个体学习器 “好而不同”,要让个体学习器尽可能的独立;而完全独立是“不存在”的,所以,设法让个体学习器尽可能具有较大的差异性。上一节提到了采用Boosting算法来串行生成个体学习器,Boosting更关注于减少偏差。而还有一种可并行生成个体学习器的算法,...
阅读(264) 评论(0)

【机器学习-西瓜书】八、集成学习:Boosting

推荐阅读: 多样性 ;Boosting;AdaBoost第八章 集成学习8.1个体与集成关键词:集成学习;弱学习器;多样性集成学习(ensemble learning 美[ɑ:nˈsɑ:mbl])通过构建并结合多个学习器(分类器)来完成分类任务。集成学习的一般结构:先产生一组“个体学习器”(individual learner),再用某种策略将它们结合起来。集成学习有两个关键的东西,第一,就是一组...
阅读(1676) 评论(0)

【文献阅读】Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms

推荐阅读:数据制作paper 地址:https://arxiv.org/abs/1708.07747 数据集下载:https://github.com/zalandoresearch/fashion-mnist 上个月底突然被Fashion-MNIST刷屏,于是乎看看这个数据集是个什么样的数据集。命名技巧:Fashion-MNIST其命名很有技巧,“蹭”了MNIST,要不然也火不了。就像JAVA...
阅读(504) 评论(0)

【机器学习-西瓜书】七、朴素贝叶斯分类器

推荐前期阅读:http://blog.csdn.net/u011995719/article/details/76732663 推荐阅读:拉普拉斯修正7.3朴素贝叶斯分类器关键词: 朴素贝叶斯;拉普拉斯修正 上一小节我们知道贝叶斯分类器的分类依据是这公式:P(c∣x)=P(x,c)P(x)=P(c)⋅P(c∣x)P(x)P(c\mid x)=\frac{P(x,c)}{P(x)}=\frac{P(...
阅读(312) 评论(0)

【机器学习-西瓜书】七、贝叶斯分类器

推荐前期阅读:http://blog.csdn.net/u011995719/article/details/76732663 推荐阅读: 期望损失;条件风险7.1 贝叶斯决策论关键词:期望损失;条件风险;贝叶斯风险;判别模式;生成模式假设对手写体数字进行分类,共计有10种类别标记,即Y={y0,…,y9}Y={y_{0},…,y_{9}}, λij\lambda _{ij}是将一个真实样本标记...
阅读(1932) 评论(0)

【机器学习-西瓜书】六、支持向量机:核技巧;软间隔;惩罚因子C;松弛变量

推荐阅读: 核技巧;惩罚因子C关键词:核技巧;软间隔;惩罚因子C;松弛变量6.3核函数关键词:核函数;核技巧上一节讲到,SVM寻找的是使得间隔最大的那一个超平面作为分类器,这还是一个线性分类器,然而很多情况下是非线性可分的,SVM是如何解决这个问题的呢?SVM是将样本从原始空间映射到一个更高维度的特征空间,使得样本在特征空间中线性可分。例如简单的异或问题在二维空间中线性不可分,但是映射到三维空间就线...
阅读(205) 评论(0)
59条 共4页1 2 3 4 下一页 尾页
    个人资料
    • 访问:29253次
    • 积分:902
    • 等级:
    • 排名:千里之外
    • 原创:54篇
    • 转载:5篇
    • 译文:0篇
    • 评论:42条