关闭
当前搜索:

[置顶] 深度学习人脸关键点检测方法----综述

参考资料 一 引言 二 检测方法 总结 近期对人脸关键点相关方法进行了研究,在深度学习大行其道的背景之下,此博客对近期人脸关键点检测深度学习方法进行了记录和总结,希望给广大朋友一点点启发,也希望大家指出我阅读过程中的错误~ 主要有如下模型: 2.1 ASM (Active Shape Models) 2.2 AAM(Active Appearance Models) 2....
阅读(1231) 评论(0)

修改caffe源码--支持多标签--关键点检测

第一步 image_data_layerhpp 第二步 image_data_layercpp 原版caffe不支持多标签,会报错,如下: 注:这里读取数据的method是ImageData,即 type:ImageData 此方法直接从txt中获取图片路径和label,进行读取,txt如下所示: ——————————————————————–正文————————————...
阅读(73) 评论(0)

轻量化网络:MobileNet-V2

创新点 正文 MobileNet-V2网络结构 MobileNetV2: 《Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation》 于2018年1月公开在arXiv(美[ˈɑ:rkaɪv]) :https://arxi......
阅读(1240) 评论(0)

模型压缩:Deep Compression

第一步weight pruning 第二步trained quantization and weight sharing 第三步 Huffman coding 实验分析之压缩几十倍从何而来 实验分析之极致量化 《Deep Compression Compressing Deep Neural Networks with Pruning, Trained Quantization...
阅读(74) 评论(0)

轻量化卷积神经网络:SqueezeNet、MobileNet、ShuffleNet、Xception

一 引言 二 轻量化模型 1 SqueezeNet 2 MobileNet 3 ShuffleNet 4 Xception 三 网络对比 一 引言 自2012年AlexNet以来,卷积神经网络(简称CNN)在图像分类、图像分割、目标检测等领域获得广泛应用。随着性能的要求越来越高,AlexNet已经无法满足大家的需求,于是乎各路大牛纷纷提出性能更优越的CNN网络,如...
阅读(181) 评论(2)

caffe :error MSB4062: 未能从程序集** 加载任务“NuGetPackageOverlay”

四个工作日 吐血安装 caffe-master(哭),记录一个关于: 错误 1 error MSB4062: 未能从程序集 E:\NugetPackages\OpenCV.2.4.10\build\native\private\coapp.NuGetNativeMSBuildTasks.dll 加载任务“NuGetPackageOverlay”。未能加载文件或程序集“file:///E...
阅读(244) 评论(0)

ResNeXt - Aggregated Residual Transformations for Deep Neural Networks

《Aggregated Residual Transformations for Deep Neural Networks》是Saining Xie等人于2016年公开在arXiv上: https://arxiv.org/pdf/1611.05431.pdf 创新点 1.在传统Resnet基础上采用group convolution,在不增加参数量的前提下,获得更强的representation...
阅读(152) 评论(0)

轻量化网络:ShuffleNet

《ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices 》来自face++,发表于CVPR-2017, 其主要采用两个“新”操作对卷积神经网络结构进行修改,达到提高计算效率的目的。github: https://github.com/farmingyard/ShuffleNet创新点:...
阅读(174) 评论(0)

轻量化网络:SqueezeNet

SqueezeNet 发表于ICLR-2017,作者分别来自Berkeley和Stanford,SqueezeNet不是模型压缩技术,而是 “design strategies for CNN architectures with few parameters” 创新点: 1. 采用不同于传统的卷积方式( 类似于inception思想) ,提出fire module;fire module包含...
阅读(258) 评论(0)

模型加速:WAE-Learning a Wavelet-like Auto-Encoder to Accelerate Deep Neural Networks

WAE(Wavelet-like Auto-Encoder) 是由来自中大、哈工大、桂电等多机构的多名研究人员合作提出的,发表于AAAI-2018(论文地址: https://arxiv.org/pdf/1712.07493.pdf github 创新点: 1. WAE借助小波分解得思想,将原图分解成两个低分辨率图像,以达到网络加速的目。 (PS:整体思路:下采样的方法达到网络加速,但...
阅读(413) 评论(2)

轻量化网络:Xception

Xception: Deep Learning with Depthwise Separable Convolutions 是2017年 google的文章 Xception 是对Inception v3的改进,是一种 Extreme Inception,因而得名 Xception,其主要是借鉴(非采用)depthwise separable convolution来替换原来Inception v...
阅读(200) 评论(0)

轻量化网络:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications(MobileNets paper)是CVPR-2017一篇paper,作者均来之Google,其提出一种“新”的卷积方式来设计网络,主要针对移动端设备所设计,因此,得名MobileNets 注:MobileNets不是模型压缩技...
阅读(161) 评论(0)

模型压缩:Networks Slimming-Learning Efficient Convolutional Networks through Network Slimming

Network Slimming-Learning Efficient Convolutional Networks through Network Slimming(Paper) 2017年ICCV的一篇paper,思路清晰,骨骼清奇~~ 创新点: 1. 利用batch normalization中的缩放因子γ 作为重要性因子,即γ越小,所对应的channel不太重要,就可以裁剪(pru...
阅读(480) 评论(1)

人脸关键点:MTCNN-Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks

创新点: 1. 首次将级联和多任务结合起来,之前有单纯级联的DCNN,单纯多任务的TCDCN 2. 提出 a new online hard sample mining strategy,没接触过hard sample mining ,知道的同学介绍介绍呗~2016年,Zhang等人提出一种多任务级联卷积神经网络(MTCNN, Multi-task Cascaded Convolutional...
阅读(379) 评论(0)

人脸关键点:DAN-Deep Alignment Network: A convolutional neural network for robust face alignment

DAN-Deep Alignment Network,发表于CVPR-2017。很纳闷DAN取名中的D,为什么是deep,如果是深度学习的deep,岂不是很无区分性?有知道的朋友请告诉我这个D是什么意思~ DAN从名字上看不出来这个网络的创新点在哪里。 创新点: 1.与以往的级联模型不同,网络模型输入是整张人脸图,可获取更多信息。 2.谁不想用更多的信息呢? 还不是因为有问题,但是DAN怎...
阅读(528) 评论(1)
78条 共6页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:58338次
    • 积分:1394
    • 等级:
    • 排名:千里之外
    • 原创:73篇
    • 转载:5篇
    • 译文:0篇
    • 评论:65条