最长公共子序列

原创 2016年05月22日 13:23:17

原理
动态规划方法解LCS问题的原理如下:
考虑最长公共子序列问题如何分解成子问题,设A=“a0,a1,…,am-1”,B=“b0,b1,…,bn-1”,并Z=“z0,z1,…,zk-1”为它们的最长公共子序列。不难证明有以下性质:
(1) 如果am-1=bn-1,则zk-1=am-1=bn-1,且“z0,z1,…,zk-2”是“a0,a1,…,am-2”和“b0,b1,…,bn-2”的一个最长公共子序列;
(2) 如果am-1!=bn-1,则若zk-1!=am-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列;
(3) 如果am-1!=bn-1,则若zk-1!=bn-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列。
这样,在找A和B的公共子序列时,如有am-1=bn-1,则进一步解决一个子问题,找“a0,a1,…,am-2”和“b0,b1,…,bm-2”的一个最长公共子序列;如果am-1!=bn-1,则要解决两个子问题,找出“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列和找出“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列,再取两者中较长者作为A和B的最长公共子序列。


引进一个二维数组c[][],用c[i][j]记录X[i]与Y[j] 的LCS 的长度,b[i][j]记录c[i][j]是通过哪一个子问题的值求得的,以决定搜索的方向
我们是自底向上进行递推计算,那么在计算c[i,j]之前,c[i-1][j-1],c[i-1][j]与c[i][j-1]均已计算出来。此时我们根据X[i] = Y[j]还是X[i] != Y[j],就可以计算出c[i][j]。

问题的递归式写成:

recursive formula

回溯输出最长公共子序列过程:

flow

 

算法分析:
由于每次调用至少向上或向左(或向上向左同时)移动一步,故最多调用(m * n)次就会遇到i = 0或j = 0的情况,此时开始返回。返回时与递归调用时方向相反,步数相同,故算法时间复杂度为Θ(m * n)。

实现代码:

public class LCP {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		String one = " " + "ABCBDAB";
		String two = " " + "BDCABA";

		char x[] = one.toCharArray();
		char y[] = two.toCharArray();

		int b[][] = getLength(x, y);

		myprint(b, x, x.length - 1, y.length - 1);
	}

	private static void myprint(int[][] b, char[] x, int i, int j) {

		if (i == 0 || j == 0) {
			return;
		}

		if (b[i][j] == 0) {
			myprint(b, x, i - 1, j - 1);
			System.out.print(x[i] + " ");
		} else if (b[i][j] == 1) {
			myprint(b, x, i - 1, j);
		} else {
			myprint(b, x, i, j - 1);
		}

	}

	private static int[][] getLength(char[] x, char[] y) {
		// TODO Auto-generated method stub
		int b[][] = new int[x.length][y.length];
		int c[][] = new int[x.length][y.length];

		for (int i = 1; i < x.length; i++) {
			for (int j = 1; j < y.length; j++) {
				if (x[i] == y[j]) {
					c[i][j] = c[i - 1][j - 1] + 1;
					b[i][j] = 0; // 左上角继承
				} else if (c[i - 1][j] >= c[i][j - 1]) {
					c[i][j] = c[i - 1][j];
					b[i][j] = 1; // 上方继承
				} else {
					c[i][j] = c[i][j - 1];
					b[i][j] = 2; // 左方继承
				}
			}
		}

		return b;
	}

}
测试结果:


版权声明:本文为博主原创文章,转载请注明地址。

相关文章推荐

数据映射--跳表(skiplist)

http://blog.sina.com.cn/s/blog_693f08470101n2lv.html 本周我要介绍的数据结构,是我非常非常喜欢的一个数据结构,因为咱也是吃过平衡二叉树的苦的人啊...

B字符串在A字符串中出现的次数

转载自http://hi.baidu.com/liuflin/blog/item/786578cc632fbe1700e928d2.html输入两个字符串,分别命名为串A和串B,现要查找出,B在A中出...

最长公共子序列

  • 2017年06月24日 15:43
  • 3KB
  • 下载

最长公共子序列

  • 2014年06月26日 10:46
  • 695B
  • 下载

011-最长公共子序列-动态规划-《算法设计技巧与分析》M.H.A学习笔记

给出两个长度分别为n和m的字符串A和B,确定A和B中最长公共子序列的长度。 朴素算法:列举A中所有的子序列2n个,并逐个判断其是否在B中(Θ(m)耗费)。时间复杂度为Θ(m2n)。 利用动态规划可以在...

最长公共子序列

  • 2014年03月15日 18:49
  • 916B
  • 下载

最长公共子序列

  • 2014年07月03日 20:50
  • 709B
  • 下载

动态规划解最长公共子序列问题(LCS)C语言加注释

【问题】 求两字符序列的最长公共字符子序列 问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,...

最长公共子序列

  • 2012年11月02日 18:06
  • 2KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:最长公共子序列
举报原因:
原因补充:

(最多只允许输入30个字)