最长公共子序列

1809人阅读 评论(2) 收藏 举报
分类:

原理
动态规划方法解LCS问题的原理如下:
考虑最长公共子序列问题如何分解成子问题,设A=“a0,a1,…,am-1”,B=“b0,b1,…,bn-1”,并Z=“z0,z1,…,zk-1”为它们的最长公共子序列。不难证明有以下性质:
(1) 如果am-1=bn-1,则zk-1=am-1=bn-1,且“z0,z1,…,zk-2”是“a0,a1,…,am-2”和“b0,b1,…,bn-2”的一个最长公共子序列;
(2) 如果am-1!=bn-1,则若zk-1!=am-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列;
(3) 如果am-1!=bn-1,则若zk-1!=bn-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列。
这样,在找A和B的公共子序列时,如有am-1=bn-1,则进一步解决一个子问题,找“a0,a1,…,am-2”和“b0,b1,…,bm-2”的一个最长公共子序列;如果am-1!=bn-1,则要解决两个子问题,找出“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列和找出“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列,再取两者中较长者作为A和B的最长公共子序列。


引进一个二维数组c[][],用c[i][j]记录X[i]与Y[j] 的LCS 的长度,b[i][j]记录c[i][j]是通过哪一个子问题的值求得的,以决定搜索的方向
我们是自底向上进行递推计算,那么在计算c[i,j]之前,c[i-1][j-1],c[i-1][j]与c[i][j-1]均已计算出来。此时我们根据X[i] = Y[j]还是X[i] != Y[j],就可以计算出c[i][j]。

问题的递归式写成:

recursive formula

回溯输出最长公共子序列过程:

flow

 

算法分析:
由于每次调用至少向上或向左(或向上向左同时)移动一步,故最多调用(m * n)次就会遇到i = 0或j = 0的情况,此时开始返回。返回时与递归调用时方向相反,步数相同,故算法时间复杂度为Θ(m * n)。

实现代码:

public class LCP {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		String one = " " + "ABCBDAB";
		String two = " " + "BDCABA";

		char x[] = one.toCharArray();
		char y[] = two.toCharArray();

		int b[][] = getLength(x, y);

		myprint(b, x, x.length - 1, y.length - 1);
	}

	private static void myprint(int[][] b, char[] x, int i, int j) {

		if (i == 0 || j == 0) {
			return;
		}

		if (b[i][j] == 0) {
			myprint(b, x, i - 1, j - 1);
			System.out.print(x[i] + " ");
		} else if (b[i][j] == 1) {
			myprint(b, x, i - 1, j);
		} else {
			myprint(b, x, i, j - 1);
		}

	}

	private static int[][] getLength(char[] x, char[] y) {
		// TODO Auto-generated method stub
		int b[][] = new int[x.length][y.length];
		int c[][] = new int[x.length][y.length];

		for (int i = 1; i < x.length; i++) {
			for (int j = 1; j < y.length; j++) {
				if (x[i] == y[j]) {
					c[i][j] = c[i - 1][j - 1] + 1;
					b[i][j] = 0; // 左上角继承
				} else if (c[i - 1][j] >= c[i][j - 1]) {
					c[i][j] = c[i - 1][j];
					b[i][j] = 1; // 上方继承
				} else {
					c[i][j] = c[i][j - 1];
					b[i][j] = 2; // 左方继承
				}
			}
		}

		return b;
	}

}
测试结果:


查看评论

最长公共子序列(易理解)

最长公共子串(Longest Common Substirng)和最长公共子序列(Longest Common Subsequence,LCS)的区别为:子串是串的一个连续的部分,子序列则是从不改变序...
  • amazingcode
  • amazingcode
  • 2016年06月16日 20:09
  • 2226

最长公共子序列(nlogn)

最长公共子序列(LCS)最常见的算法是时间复杂度为O(n^2)的动态规划(DP)算法,但在James W. Hunt和Thomas G. Szymansky 的论文"A Fast Algorithm ...
  • wdq347
  • wdq347
  • 2013年05月31日 16:03
  • 7581

javascript版本的最长公共子序列

初学js,拿个lcs问题练练手: /** * Created by fhqplzj on 2017/7/15. */ function lcs(s1, s2) { var m = s1....
  • ASD991936157
  • ASD991936157
  • 2017年07月15日 11:16
  • 255

算法导论-----最长公共子序列LCS(动态规划)

目录 一.概念梳理 二.最长公共子序列解决方案 方案1:蛮力搜索策略 方案2:动态规划策略 三、C代码实现 实现1 实现2(空间优化) 一.概念梳理  1. 子序列(subsequence): ...
  • so_geili
  • so_geili
  • 2016年12月19日 22:51
  • 4543

最长公共子序列的NlogN解法

最长公共子序列 的 nlogn 的算法本质是 将该问题转化成 最长增序列(LIS),因为 LIS 可以用nlogn实现,所以求LCS的时间复杂度降低为 nlogn。 1. 转化:将LCS问题转化...
  • guogaoan
  • guogaoan
  • 2014年08月13日 17:22
  • 934

[LeetCode] 最长公共子序列

题目 这个问题就是最长公共子序列问题,区别与我之前做过的最长公共子串问题。典型的这类问题的形式如下: 有两个串:x和y,长度分别为m和n,求它们的最长公共子序列。 分析 这题主要就是两个方...
  • qq_34035179
  • qq_34035179
  • 2018年01月13日 14:56
  • 122

最长公共子序列nlogn算法

求两个序列的最大公共子序列(LCS),普遍的动态规划算法时间复杂度为O(n^2),在两个序列的长度很长的时候运行时间过长。可以转化为最长上升子序列(LIS)来求,时间复杂度可以优化到nlogn。1.首...
  • zhijianshafeiyang
  • zhijianshafeiyang
  • 2015年04月14日 00:04
  • 1746

动态规划之最长公共子序列问题(LCS)

问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk...
  • zjq_1314520
  • zjq_1314520
  • 2017年07月08日 18:44
  • 324

C# 最长公共子序列

本程序实现了字符串的最长公共子序列的方法:str[i,j]数组中保存str1,str2长度分别为0-i,0-j之间的最长公共子序列,s[i,j]数组中保存str1,str2长度分别为0-i,0-j之间...
  • luozuolincool
  • luozuolincool
  • 2014年10月15日 15:37
  • 1342

lintcode-最长公共子序列-77

给出两个字符串,找到最长公共子序列(LCS),返回LCS的长度。 样例 给出"ABCD" 和 "EDCA",这个LCS是 "A" (或 D或C),返回1 给出 "ABCD...
  • ljlstart
  • ljlstart
  • 2015年09月10日 21:09
  • 1358
    个人资料
    持之以恒
    等级:
    访问量: 5万+
    积分: 1936
    排名: 2万+
    最新评论