【机器学习-斯坦福】学习笔记11 混合高斯模型(Mixtures of Gaussians)和EM算法

转载 2013年12月03日 09:49:32

这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation)。

      与k-means一样,给定的训练样本是clip_image002,我们将隐含类别标签用clip_image004表示。与k-means的硬指定不同,我们首先认为clip_image004[1]是满足一定的概率分布的,这里我们认为满足多项式分布,clip_image006,其中clip_image008clip_image004[2]有k个值{1,…,k}可以选取。而且我们认为在给定clip_image004[3]后,clip_image010满足多值高斯分布,即clip_image012。由此可以得到联合分布clip_image014

      整个模型简单描述为对于每个样例clip_image010[1],我们先从k个类别中按多项式分布抽取一个clip_image016,然后根据clip_image016[1]所对应的k个多值高斯分布中的一个生成样例clip_image010[2],。整个过程称作混合高斯模型。注意的是这里的clip_image016[2]仍然是隐含随机变量。模型中还有三个变量clip_image018clip_image020。最大似然估计为clip_image022。对数化后如下:

      clip_image023

      这个式子的最大值是不能通过前面使用的求导数为0的方法解决的,因为求的结果不是close form。但是假设我们知道了每个样例的clip_image016[3],那么上式可以简化为:

      clip_image024

       这时候我们再来对clip_image018[1]clip_image020[1]进行求导得到:

      clip_image025

      clip_image027就是样本类别中clip_image029的比率。clip_image031是类别为j的样本特征均值,clip_image033是类别为j的样例的特征的协方差矩阵。

实际上,当知道clip_image016[4]后,最大似然估计就近似于高斯判别分析模型(Gaussian discriminant analysis model)了。所不同的是GDA中类别y是伯努利分布,而这里的z是多项式分布,还有这里的每个样例都有不同的协方差矩阵,而GDA中认为只有一个。

      之前我们是假设给定了clip_image016[5],实际上clip_image016[6]是不知道的。那么怎么办呢?考虑之前提到的EM的思想,第一步是猜测隐含类别变量z,第二步是更新其他参数,以获得最大的最大似然估计。用到这里就是:

循环下面步骤,直到收敛: {

      (E步)对于每一个i和j,计算

                  clip_image035

      (M步),更新参数:

                  clip_image036

}

      在E步中,我们将其他参数clip_image038看作常量,计算clip_image040的后验概率,也就是估计隐含类别变量。估计好后,利用上面的公式重新计算其他参数,计算好后发现最大化最大似然估计时,clip_image042值又不对了,需要重新计算,周而复始,直至收敛。

      clip_image042[1]的具体计算公式如下:

      clip_image043

      这个式子利用了贝叶斯公式。

      这里我们使用clip_image045代替了前面的clip_image047,由简单的0/1值变成了概率值。

      对比K-means可以发现,这里使用了“软”指定,为每个样例分配的类别clip_image040[1]是有一定的概率的,同时计算量也变大了,每个样例i都要计算属于每一个类别j的概率。与K-means相同的是,结果仍然是局部最优解。对其他参数取不同的初始值进行多次计算不失为一种好方法。

      虽然之前再K-means中定性描述了EM的收敛性,仍然没有定量地给出,还有一般化EM的推导过程仍然没有给出。下一篇着重介绍这些内容。

xCompressCU()递归调用过程

在xCompressCU()这个函数里面,一直会见到两个缓存区:rpcBestCU和rpcTempCU。转到xCheckRDCostIntra()里面,实际做预测工作的是estIntraPredQT(...

HEVC函数入门(14)——建议先看:整个编码流程以及相关的函数

这篇文章本来要放在前面的,但是我看到的晚,然后发现很有用,就转载一下吧。 转自:http://blog.csdn.net/nb_vol_1/article/details/51144828该作者也是...

TComPicYuv、TComPic、TComPicSym、TComDataCU以及TComYuv的关系

TComPicYuv、TComPic、TComPicSym、TComDataCU以及TComYuv的关系 首先用一张图来描述它们之间的关系 1、HM首先使用TComPicYuv保存从文件中...

xcompressCU

#if AMP_ENC_SPEEDUP Void TEncCu::xCompressCU( TComDataCU*& rpcBestCU, TComDataCU*& rpcTempCU, const ...
  • Villa_7
  • Villa_7
  • 2017年04月12日 10:55
  • 216

HEVC 中主要LCU分析函数xCompressCU说明

所有LCU都是通过调用xCompressCU来实现其CU/PU划分. 然后通过其结果再调用 TEncCu::xencodeCU 函数来实现对所有CUs进行压缩编码.   xCompressCU大体...

HM编码器代码阅读(12)——CU编码

入口函数:TEncCu::compressCU(或者xCompressCU)。xCompressCU是一个递归函数,对于每一个CU,该函数都会被调用,主要是计算当前CU编码之后代价,然后再计算当前CU...

HEVC代码追踪(八):帧内->xCheckRDCostIntra

Void TEncCu::xCheckRDCostIntra( TComDataCU*& rpcBestCU, TComDataCU*& rpcTempCU, PartSize eSize ) { ...

HEVC代码追踪(七):xCompressCu

// =================================================================================================...

xcompressCU

// =================================================================================================...
  • Moz_z
  • Moz_z
  • 2014年10月03日 02:33
  • 966

斯坦福ML公开课笔记13A——混合高斯模型、混合贝叶斯模型

本文对应公开课的第13个视频,这个视频仍然和EM算法非常相关,第12个视频讲解了EM算法的基础,本视频则是在讲EM算法的应用。本视频的主要内容包括混合高斯模型(Mixture of Gaussian,...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【机器学习-斯坦福】学习笔记11 混合高斯模型(Mixtures of Gaussians)和EM算法
举报原因:
原因补充:

(最多只允许输入30个字)