关闭

GMM与EM算法(二)

标签: machine learning
913人阅读 评论(0) 收藏 举报
分类:

Model-based——GMM(Gaussian Mixture Model)

1.GMM概念:

          -将k个高斯模型混合在一起,没给但出现的概率是几个高斯混合的结果。




          -假设有K个高斯分布,每个高斯对data points的影响因子为πk,数据点为x,高斯参数为theta,则


          -要估计的模型参数为每个类的影响因子πk,每个类的均值(μk)及协方差矩阵(Σk)




2. GMM的似然函数:

          log-likelihood function:

          假设N个点的分布符合i.i.d,则有似然函数


          问题是,对于这样的一个似然函数,用gradient descent的方法很难进行参数估计(可证明)

          所以用前面我们讲过的EM(expectation maximization)算法进行估计:


          引入中间latent项z(i),其分布为Q,用EM算法,就有上面的恒等,那么为什么是恒等呢?来看看讲EM的这篇文章,第三张的开头写的,=constant,也就是说与z(i)无关了,而等于p(x(i);theta),这也就是说可以用混合高斯模型的概率表示了。





3. EM具体应用到GMM参数求解问题:

E-step: 根据已有observed data和现有模型估计missing data:Qi(zk)

M-step: 已经得到了Q,在M-step中进行最大似然函数估计(可以直接用log-likelihood似然函数对参数求偏导)




4. GMM的实现



5. K-Means与GMM的比较:

          

          -KMeans:

1. Objective function:§Minimize the TSD
2. Can be optimized by an EM algorithm.
          §E-step: assign points to clusters.
          §M-step: optimize clusters.
          §Performs hard assignment during E-step.
3. Assumes spherical clusters with equal probability of a cluster.


          -GMM:

1. Objective function:§Maximize the log-likelihood.
2. EM algorithm:
          §E-step: Compute posterior probability of membership.
          §M-step: Optimize parameters.
          §Perform soft assignment during E-step.
3. Can be used for non-sphericalclusters. Can generate clusterswith different probabilities.



本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。


1. GMM模型:

每个 GMM 由 K 个 Gaussian 分布组成,每个 Gaussian 称为一个“Component”,这些 Component 线性加成在一起就组成了 GMM 的概率密度函数:


根据上面的式子,如果我们要从 GMM 的分布中随机地取一个点的话,实际上可以分为两步:首先随机地在这 K个Gaussian Component 之中选一个,每个 Component 被选中的概率实际上就是它的系数 pi(k) ,选中了 Component 之后,再单独地考虑从这个 Component 的分布中选取一个点就可以了──这里已经回到了普通的 Gaussian 分布,转化为了已知的问题。

那么如何用 GMM 来做 clustering 呢?其实很简单,现在我们有了数据,假定它们是由 GMM 生成出来的,那么我们只要根据数据推出 GMM 的概率分布来就可以了,然后 GMM 的 K 个 Component 实际上就对应了 K 个 cluster 了。根据数据来推算概率密度通常被称作 density estimation ,特别地,当我们在已知(或假定)了概率密度函数的形式,而要估计其中的参数的过程被称作“参数估计”。


2. 参数与似然函数:

现在假设我们有 N 个数据点,并假设它们服从某个分布(记作 p(x) ),现在要确定里面的一些参数的值,例如,在 GMM 中,我们就需要确定 影响因子pi(k)、各类均值pMiu(k) 和 各类协方差pSigma(k) 这些参数。 我们的想法是,找到这样一组参数,它所确定的概率分布生成这些给定的数据点的概率最大,而这个概率实际上就等于  ,我们把这个乘积称作似然函数 (Likelihood Function)。通常单个点的概率都很小,许多很小的数字相乘起来在计算机里很容易造成浮点数下溢,因此我们通常会对其取对数,把乘积变成加和 \sum_{i=1}^N \log p(x_i),得到 log-likelihood function 。接下来我们只要将这个函数最大化(通常的做法是求导并令导数等于零,然后解方程),亦即找到这样一组参数值,它让似然函数取得最大值,我们就认为这是最合适的参数,这样就完成了参数估计的过程。

下面让我们来看一看 GMM 的 log-likelihood function :


由于在对数函数里面又有加和,我们没法直接用求导解方程的办法直接求得最大值。为了解决这个问题,我们采取之前从 GMM 中随机选点的办法:分成两步,实际上也就类似于K-means 的两步。



3. 算法流程:

1.  估计数据由每个 Component 生成的概率(并不是每个 Component 被选中的概率):对于每个数据 x_i 来说,它由第 k 个 Component 生成的概率为


其中N(xi | μk,Σk)就是后验概率


2. 通过极大似然估计可以通过求到令参数=0得到参数pMiu,pSigma的值。具体请见这篇文章第三部分。


其中 N_k = \sum_{i=1}^N \gamma(i, k) ,并且 \pi_k 也顺理成章地可以估计为 N_k/N 。


3. 重复迭代前面两步,直到似然函数的值收敛为止。



4. matlab实现GMM聚类代码与解释:


说明:fea为训练样本数据,gnd为样本标号。算法中的思想和上面写的一模一样,在最后的判断accuracy方面,由于聚类和分类不同,只是得到一些 cluster ,而并不知道这些 cluster 应该被打上什么标签,或者说。由于我们的目的是衡量聚类算法的 performance ,因此直接假定这一步能实现最优的对应关系,将每个 cluster 对应到一类上去。一种办法是枚举所有可能的情况并选出最优解,另外,对于这样的问题,我们还可以用 Hungarian algorithm 来求解。具体的Hungarian代码我放在了资源里,调用方法已经写在下面函数中了。


注意:资源里我放的是Kmeans的代码,大家下载的时候只要用bestMap.m等几个文件就好~


1. gmm.m,最核心的函数,进行模型与参数确定。

  1. function varargout = gmm(X, K_or_centroids)  
  2. % ============================================================  
  3. % Expectation-Maximization iteration implementation of  
  4. % Gaussian Mixture Model.  
  5. %  
  6. % PX = GMM(X, K_OR_CENTROIDS)  
  7. % [PX MODEL] = GMM(X, K_OR_CENTROIDS)  
  8. %  
  9. %  - X: N-by-D data matrix.  
  10. %  - K_OR_CENTROIDS: either K indicating the number of  
  11. %       components or a K-by-D matrix indicating the  
  12. %       choosing of the initial K centroids.  
  13. %  
  14. %  - PX: N-by-K matrix indicating the probability of each  
  15. %       component generating each point.  
  16. %  - MODEL: a structure containing the parameters for a GMM:  
  17. %       MODEL.Miu: a K-by-D matrix.  
  18. %       MODEL.Sigma: a D-by-D-by-K matrix.  
  19. %       MODEL.Pi: a 1-by-K vector.  
  20. % ============================================================  
  21. % @SourceCode Author: Pluskid (http://blog.pluskid.org)  
  22. % @Appended by : Sophia_qing (http://blog.csdn.net/abcjennifer)  
  23.       
  24.   
  25. %% Generate Initial Centroids  
  26.     threshold = 1e-15;  
  27.     [N, D] = size(X);  
  28.    
  29.     if isscalar(K_or_centroids) %if K_or_centroid is a 1*1 number  
  30.         K = K_or_centroids;  
  31.         Rn_index = randperm(N); %random index N samples  
  32.         centroids = X(Rn_index(1:K), :); %generate K random centroid  
  33.     else % K_or_centroid is a initial K centroid  
  34.         K = size(K_or_centroids, 1);   
  35.         centroids = K_or_centroids;  
  36.     end  
  37.    
  38.     %% initial values  
  39.     [pMiu pPi pSigma] = init_params();  
  40.    
  41.     Lprev = -inf; %上一次聚类的误差  
  42.       
  43.     %% EM Algorithm  
  44.     while true  
  45.         %% Estimation Step  
  46.         Px = calc_prob();  
  47.    
  48.         % new value for pGamma(N*k), pGamma(i,k) = Xi由第k个Gaussian生成的概率  
  49.         % 或者说xi中有pGamma(i,k)是由第k个Gaussian生成的  
  50.         pGamma = Px .* repmat(pPi, N, 1); %分子 = pi(k) * N(xi | pMiu(k), pSigma(k))  
  51.         pGamma = pGamma ./ repmat(sum(pGamma, 2), 1, K); %分母 = pi(j) * N(xi | pMiu(j), pSigma(j))对所有j求和  
  52.    
  53.         %% Maximization Step - through Maximize likelihood Estimation  
  54.           
  55.         Nk = sum(pGamma, 1); %Nk(1*k) = 第k个高斯生成每个样本的概率的和,所有Nk的总和为N。  
  56.           
  57.         % update pMiu  
  58.         pMiu = diag(1./Nk) * pGamma' * X; %update pMiu through MLE(通过令导数 = 0得到)  
  59.         pPi = Nk/N;  
  60.           
  61.         % update k个 pSigma  
  62.         for kk = 1:K   
  63.             Xshift = X-repmat(pMiu(kk, :), N, 1);  
  64.             pSigma(:, :, kk) = (Xshift' * ...  
  65.                 (diag(pGamma(:, kk)) * Xshift)) / Nk(kk);  
  66.         end  
  67.    
  68.         % check for convergence  
  69.         L = sum(log(Px*pPi'));  
  70.         if L-Lprev < threshold  
  71.             break;  
  72.         end  
  73.         Lprev = L;  
  74.     end  
  75.    
  76.     if nargout == 1  
  77.         varargout = {Px};  
  78.     else  
  79.         model = [];  
  80.         model.Miu = pMiu;  
  81.         model.Sigma = pSigma;  
  82.         model.Pi = pPi;  
  83.         varargout = {Px, model};  
  84.     end  
  85.    
  86.     %% Function Definition  
  87.       
  88.     function [pMiu pPi pSigma] = init_params()  
  89.         pMiu = centroids; %k*D, 即k类的中心点  
  90.         pPi = zeros(1, K); %k类GMM所占权重(influence factor)  
  91.         pSigma = zeros(D, D, K); %k类GMM的协方差矩阵,每个是D*D的  
  92.    
  93.         % 距离矩阵,计算N*K的矩阵(x-pMiu)^2 = x^2+pMiu^2-2*x*Miu  
  94.         distmat = repmat(sum(X.*X, 2), 1, K) + ... %x^2, N*1的矩阵replicateK列  
  95.             repmat(sum(pMiu.*pMiu, 2)', N, 1) - ...%pMiu^2,1*K的矩阵replicateN行  
  96.             2*X*pMiu';  
  97.         [~, labels] = min(distmat, [], 2);%Return the minimum from each row  
  98.    
  99.         for k=1:K  
  100.             Xk = X(labels == k, :);  
  101.             pPi(k) = size(Xk, 1)/N;  
  102.             pSigma(:, :, k) = cov(Xk);  
  103.         end  
  104.     end  
  105.    
  106.     function Px = calc_prob()   
  107.         %Gaussian posterior probability   
  108.         %N(x|pMiu,pSigma) = 1/((2pi)^(D/2))*(1/(abs(sigma))^0.5)*exp(-1/2*(x-pMiu)'pSigma^(-1)*(x-pMiu))  
  109.         Px = zeros(N, K);  
  110.         for k = 1:K  
  111.             Xshift = X-repmat(pMiu(k, :), N, 1); %X-pMiu  
  112.             inv_pSigma = inv(pSigma(:, :, k));  
  113.             tmp = sum((Xshift*inv_pSigma) .* Xshift, 2);  
  114.             coef = (2*pi)^(-D/2) * sqrt(det(inv_pSigma));  
  115.             Px(:, k) = coef * exp(-0.5*tmp);  
  116.         end  
  117.     end  
  118. end  


2. gmm_accuracy.m调用gmm.m,计算准确率:

  1. function [ Accuracy ] = gmm_accuracy( Data_fea, gnd_label, K )  
  2. %Calculate the accuracy Clustered by GMM model  
  3.   
  4. px = gmm(Data_fea,K);  
  5. [~, cls_ind] = max(px,[],1); %cls_ind = cluster label   
  6. Accuracy = cal_accuracy(cls_ind, gnd_label);  
  7.   
  8.     function [acc] = cal_accuracy(gnd,estimate_label)  
  9.         res = bestMap(gnd,estimate_label);  
  10.         acc = length(find(gnd == res))/length(gnd);  
  11.     end  
  12.   
  13. end  


3. 主函数调用

gmm_acc = gmm_accuracy(fea,gnd,N_classes);


写了本文进行总结后自己很受益,也希望大家可以好好YM下上面pluskid的gmm.m,不光是算法,其中的矩阵处理代码也写的很简洁,很值得学习。

另外看了两份东西非常受益,一个是pluskid大牛的漫谈 Clustering (3): Gaussian Mixture Model》,一个是JerryLead的EM算法详解,大家有兴趣也可以看一下,写的很好。


src:http://blog.csdn.net/abcjennifer/article/details/8198352



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:61774次
    • 积分:1088
    • 等级:
    • 排名:千里之外
    • 原创:29篇
    • 转载:120篇
    • 译文:0篇
    • 评论:2条
    文章分类
    最新评论