在聚类中我们经常用到EM算法(i.e. Expectation - Maximization)进行参数估计, 在该算法中我们通过函数的凹/凸性,在expectation 和maximization两步中迭代地进行参数估计,并保证可以算法收敛,达到局部最优解。
PS:为了不在11.11这个吉祥的日子发blog,还是打算今天发了,祝单身coder节日快乐,心情愉快~~
由于公式实在太多,这里我就手写了……主要讲了以下几个部分:
1. 凸集,凸函数,凹集,凹函数的概念
2. Jensen's inequality
EM算法详解与应用

本文介绍了EM算法在聚类中的应用,通过期望和最大化两步迭代寻找参数的局部最优解。内容涵盖凸集、凸函数、凹集、凹函数的概念,Jensen's不等式,以及EM算法的迭代过程和收敛性证明。
最低0.47元/天 解锁文章
2617





