KMeans和KMedoid算法是聚类算法中比较普遍的方法,本文讲了其原理和matlab中实现的代码。
1.目标:
找出一个分割,使得距离平方和最小
2.K-Means算法:
1. 将数据分为k个非空子集
2. 计算每个类中心点(k-means中用所有点的平均值,K-medoid用离该平均值最近的一个点)center
3. 将每个object聚类到最近的center
4. 返回2,当聚类结果不再变化的时候stop
复杂度:
O(kndt)
-计算两点间距离:d
<
本文介绍了KMeans和KMedoids两种聚类算法的原理,详细阐述了它们的实现过程及复杂度。在Matlab中,这两种算法被用于数据聚类,KMeans依赖于类中心的平均值,而KMedoids则采用最代表性的点。算法性能受到初始点选择的影响,通常需要多次运行以找到全局最优解。文中还展示了Matlab实现的代码,并通过实验结果分析了不同类别数量下的聚类准确性。最后,提到了评估聚类效果的Hungarian算法。
KMeans和KMedoid算法是聚类算法中比较普遍的方法,本文讲了其原理和matlab中实现的代码。
1.目标:
找出一个分割,使得距离平方和最小
2.K-Means算法:
1. 将数据分为k个非空子集
2. 计算每个类中心点(k-means中用所有点的平均值,K-medoid用离该平均值最近的一个点)center
3. 将每个object聚类到最近的center
4. 返回2,当聚类结果不再变化的时候stop
复杂度:
O(kndt)
-计算两点间距离:d
<
1101
1490