KMeans和KMedoid算法是聚类算法中比较普遍的方法,本文讲了其原理和matlab中实现的代码。
1.目标:
找出一个分割,使得距离平方和最小
2.K-Means算法:
1. 将数据分为k个非空子集
2. 计算每个类中心点(k-means中用所有点的平均值,K-medoid用离该平均值最近的一个点)center
3. 将每个object聚类到最近的center
4. 返回2,当聚类结果不再变化的时候stop
复杂度:
O(kndt)
-计算两点间距离:d
KMeans和KMedoid算法是聚类算法中比较普遍的方法,本文讲了其原理和matlab中实现的代码。
1.目标:
找出一个分割,使得距离平方和最小
2.K-Means算法:
1. 将数据分为k个非空子集
2. 计算每个类中心点(k-means中用所有点的平均值,K-medoid用离该平均值最近的一个点)center
3. 将每个object聚类到最近的center
4. 返回2,当聚类结果不再变化的时候stop
复杂度:
O(kndt)
-计算两点间距离:d