KMeans和KMedoid 的Matlab实现

本文介绍了KMeans和KMedoids两种聚类算法的原理,详细阐述了它们的实现过程及复杂度。在Matlab中,这两种算法被用于数据聚类,KMeans依赖于类中心的平均值,而KMedoids则采用最代表性的点。算法性能受到初始点选择的影响,通常需要多次运行以找到全局最优解。文中还展示了Matlab实现的代码,并通过实验结果分析了不同类别数量下的聚类准确性。最后,提到了评估聚类效果的Hungarian算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

KMeans和KMedoid算法是聚类算法中比较普遍的方法,本文讲了其原理和matlab中实现的代码。



1.目标:

       找出一个分割,使得距离平方和最小


2.K-Means算法:

       1. 将数据分为k个非空子集

       2. 计算每个类中心点(k-means中用所有点的平均值,K-medoid用离该平均值最近的一个点)center

       3. 将每个object聚类到最近的center

       4. 返回2,当聚类结果不再变化的时候stop


   复杂度:

       O(kndt)

       -计算两点间距离:d

评论 52
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值