最全Pycharm教程(7)——虚拟机VM的配置

如果觉得这篇文章对您有所启发,欢迎关注我的公众号,我会尽可能积极和大家交流,谢谢。 

 



    最全Pycharm教程(1)——定制外观

  最全Pycharm教程(2)——代码风格

  最全Pycharm教程(3)——代码的调试、运行

  最全Pycharm教程(4)——有关Python解释器的相关配置

  最全Pycharm教程(5)——Python快捷键相关设置

  最全Pycharm教程(6)——将Pycharm作为Vim编辑器使用

  最全Pycharm教程(8)——Django工程的创建和管理

  设想这样一种情况,你在一个平台上操作你的工程,但你希望在另外一个平台上完善并运行它,这就是为什么Pycharm做了很多工作来支持远程调试。

  在虚拟机上运行一个工程主要包含以下步骤:

  (1)定义一个虚拟框架define a virtual box

  (2)需要在虚拟框架下配置一个远程的解释器configure a remote interpreter 

  (3)在远程控制台加载当前工程launch your script in the remote console

  1、准备工作

  确定你的Pycharm已经拥有以下环境:

  (1)安装了Oracle's Virtual Box

  (2)安装了Vagrant

  (3)将一下这些可执行文件添加到环境变量中

    Vagrant安装文件下的vagrant.bat文件,这部分工作应该由安装程序自动完成

    Oracle's VirtualBox安装文件下的VBoxManage.exe文件。

  确保Pycharm的Vagrant插件可用:单击主工具栏中的设置按钮,在设置对话框中打开 Plugins页面,显示插件默认可用:

  至此准备工作完成,正式开始。

  2、创建一个虚拟的virtual box

  在设置对话框中(单击主工具栏的设置按钮),单击 Vagrant界面,然后输入可执行文件路径以及实例路径。

  如果框架已经预先定义好,以上选项就会出现在一个下拉列表中,从中选择一个即可:

  如果当前没有合适的virtual box,则可通过单击绿色的加号来添加一个,输入框架名称和下载地址:

  单击OK,Pycharm开始自动下载VM模板:

  至此你已经新建了一个virtual box并已经将其添加到了当前环境中。

  注意Tool 菜单下的Vagrant 命令,这个命令与标准的Vagrant行为相关联。

  一旦创建了Vagrant box,就需要在工程存根下对其进行初始化。在主菜单上单击Tools | Vagrant,选择 Init in Project Root:

  选择你准备初始化的Vagrant box:

  此时会创建对应的Vagrantfile文件,可以根据要求对其进行更改:

  初始化完成后,执行vagrant up命令(在Vagrant 菜单中选择Up 命令):

  Pycharm会自动运行vagrant up 命令,并在控制台界面显示输出结果:

  3、在虚拟机上配置远程解释器

  再次打开设置对话框(单击主工具栏上的设置按钮),选择Project Interpreter页面,在这里你可以从下拉列表中选择一个对应的解释器,但是如果当前没有可用的解释器,我们就需要单击Configure Interpreters来自定义一个:

  此时会打开Python Interpreters界面,单击绿色的加号来选择一个远程的解释器:

  在Configure Remote Python Interpreter 对话框中,需要进行服务器配置。这些设置可以手动设定,也可以从已经定义好的Vagrant配置文件中导入,在这里我们选择第二个方式。 单击 Fill from Vagrant configuration按钮,将会根据配置文件的内容自动填充相关设置属性值:

  为了确认是否配置成功,单击Test connection... 按钮:

  将其设置为默认解释器:

  从现在开始我们就可以在VM虚拟机上运行所有的脚本工程了:

  接下来我们通过SSH来登录virtual box。

  4、链接SSH终端机

  为什么需要登录呢?因为Pycharm要求你这么做。

  在主菜单中选择Tools | Run SSH Terminal,如果你定义了不止一个主机(host),则选择一个你想要建立链接的(我们这里选择远程解释器):


  观察Run tool window窗口的控制台运行信息:

  现在你已经能够和virtual box进行直接交互了,首先我们先确认你的工程目录是否进行了完整映射。只需观察vagrant's默认的共享文件夹信息:

  接下来运行一个可用的脚本文件,例如Solver.py:

  大功告成。

### 如何在 PyCharm 中合理设置 JVM 堆大小上限 为了优化 PyCharm 的性能并避免内存溢出 (Out of Memory),可以调整其 JVM 堆大小配置。以下是关于如何设置合适的堆大小上限的最佳实践。 #### 配置方法 PyCharm 使用 JetBrains Runtime,这是一个基于 OpenJDK 的定制化 Java 虚拟机环境。可以通过修改 `idea.vmoptions` 文件来调整 JVM 参数[^3]。具体路径如下: - **Windows**: `<PyCharm安装目录>\bin\pycharm64.exe.vmoptions` - **macOS**: `/Applications/PyCharm.app/Contents/bin/pycharm.vmoptions` - **Linux**: `<PyCharm安装目录>/bin/pycharm64.vmoptions` 编辑该文件时,主要关注以下几个参数: - `-Xms`: 初始 Heap 大小,建议保持默认值或稍微增大。 - `-Xmx`: 最大 Heap 大小,这是最关键的参数,决定了可用的最大内存。 - `-Xss`: 每个线程的 Stack 大小,默认即可满足需求。 例如,以下是一个典型的配置示例: ```properties -Xms512m -Xmx2048m -XX:MaxPermSize=512m -XX:+HeapDumpOnOutOfMemoryError ``` 上述配置表示初始 Heap 为 512MB,最大 Heap 为 2GB,并启用了 OOM 异常时生成堆转储的功能[^1]。 #### 推荐最佳实践 1. **根据硬件资源动态调整**:如果计算机拥有较多 RAM(如 16GB 或以上),可将 `-Xmx` 设置为更高值(如 4G)。对于低配机器,则需适当降低以防止系统卡顿。 2. **监控实际使用情况**:通过内置工具或者外部分析器观察内存消耗趋势,从而判断当前设定是否合适。 3. **平衡其他应用的需求**:考虑到操作系统和其他正在运行的应用程序也需要一定量的内存空间,因此不宜无限制增加 PyCharm 的堆尺寸。 4. **启用 GC 日志记录功能**:利用 `-Xloggc:gc.log` 来跟踪垃圾回收行为有助于进一步调优。 #### 注意事项 尽管 Jython 是一种可以在 JVM 上执行 Python 代码的技术解决方案[^2],但它并不适用于现代项目中的主流场景,尤其是当涉及到最新版 Python 支持的时候。所以这里讨论的内容专注于原生 Java 平台上的 IntelliJ IDEA 家族产品 —— 即 PyCharm 自身的 JVM 性能调节方面。 ```bash # 示例命令用于查看现有 vmoption 文件内容 cat /path/to/pycharm.vmoptions ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值