HDU 1827 Summer Holiday(强连通分量)

本文针对HDU1827 SummerHoliday题目,介绍了一种利用强连通分量解决信息传播问题的方法。通过构建DAG图并找到入度为0的节点来确定最少的通知人数和电话费用。

HDU 1827 Summer Holiday(强连通分量)

http://acm.hdu.edu.cn/showproblem.php?pid=1827

题意: 

        听说lcy帮大家预定了新马泰7日游,Wiskey真是高兴的夜不能寐啊,他想着得快点把这消息告诉大家,虽然他手上有所有人的联系方式,但是一个一个联系过去实在太耗时间和电话费了。他知道其他人也有一些别人的联系方式,这样他可以通知其他人,再让其他人帮忙通知一下别人。你能帮Wiskey计算出至少要通知多少人,至少得花多少电话费就能让所有人都被通知到吗?

分析:

       先求出图的所有连通分量,然后每个分量缩成一点,构成DAG图,那些入度为0的点(所代表的分量)就是我们需要单独通知的分量.且我们每次都是选择该分量中代价最小的那个点通知即可.具体细节看代码.

AC代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<stack>
using namespace std;
const int maxn=1000+10;
int n,m;
vector<int> G[maxn];
stack<int> S;
int dfs_clock, scc_cnt;
int pre[maxn],low[maxn],sccno[maxn];
int cost[maxn],min_cost[maxn];
int in[maxn];
void dfs(int u)
{
    pre[u]=low[u]=++dfs_clock;
    S.push(u);
    for(int i=0;i<G[u].size();i++)
    {
        int v=G[u][i];
        if(!pre[v])
        {
            dfs(v);
            low[u]=min(low[u],low[v]);
        }
        else if(!sccno[v])
            low[u]=min(low[u],pre[v]);
    }
    if(low[u]==pre[u])
    {
        scc_cnt++;
        min_cost[scc_cnt]=1e9;
        while(true)
        {
            int x=S.top(); S.pop();
            sccno[x]=scc_cnt;
            min_cost[scc_cnt] = min(min_cost[scc_cnt],cost[x]);
            if(x==u) break;
        }
    }
}
void find_scc(int n)
{
    dfs_clock=scc_cnt=0;
    memset(pre,0,sizeof(pre));
    memset(sccno,0,sizeof(sccno));
    for(int i=1;i<=n;i++)
        if(!pre[i]) dfs(i);
}
int main()
{
    while(scanf("%d%d",&n,&m)==2)
    {
        for(int i=1;i<=n;i++) scanf("%d",&cost[i]),G[i].clear();
        while(m--)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            G[u].push_back(v);
        }
        find_scc(n);

        for(int i=1;i<=scc_cnt;i++) in[i]=0;
        for(int u=1;u<=n;u++)
        for(int i=0;i<G[u].size();i++)
        {
            int v=G[u][i];
            int x=sccno[u], y=sccno[v];
            if(x!=y) in[y]++;
        }
        int cnt=0,sum=0;
        for(int i=1;i<=scc_cnt;i++)if(in[i]==0)
            cnt++,sum+=min_cost[i];
        printf("%d %d\n",cnt,sum);
    }
    return 0;
}


### 使用Tarjan算法计算强连通分量数量 #### 算法原理 Tarjan算法通过深度优先搜索(DFS)遍历有向图中的节点,记录访问顺序和低链值(low-link value),从而识别出所有的强连通分量。当发现一个节点的访问序号等于其最低可达节点编号时,表明找到了一个新的强连通分量。 #### 时间复杂度分析 该方法的时间效率取决于存储结构的选择。对于采用邻接表表示的稀疏图而言,整体性能更优,能够在线性时间内完成操作,即O(n+m)[^4];而针对稠密图则可能退化至平方级别(O())。 #### Python代码实现 下面给出一段Python程序用于演示如何基于NetworkX库构建并处理带权无环图(DAG),进而求解其中存在的全部SCC及其总数: ```python import networkx as nx def tarjan_scc(graph): index_counter = [0] stack = [] lowlinks = {} index = {} result = [] def strongconnect(node): # Set the depth index for this node to be the next available incrementing counter. index[node] = index_counter[0] lowlinks[node] = index_counter[0] index_counter[0] += 1 stack.append(node) try: successors = graph.successors(node) except AttributeError: successors = graph.neighbors(node) for successor in successors: if successor not in lowlinks: strongconnect(successor) lowlinks[node] = min(lowlinks[node], lowlinks[successor]) elif successor in stack: lowlinks[node] = min(lowlinks[node], index[successor]) if lowlinks[node] == index[node]: scc = set() while True: current_node = stack.pop() scc.add(current_node) if current_node == node: break result.append(scc) for node in graph.nodes(): if node not in lowlinks: strongconnect(node) return result if __name__ == "__main__": G = nx.DiGraph() # Create a directed graph object using NetworkX library edges_list = [(1, 2),(2, 3),(3, 1)] # Define edge list according to sample input data from hdu1269 problem statement[^5] G.add_edges_from(edges_list) components = tarjan_scc(G) print(f"Number of Strongly Connected Components found: {len(components)}") ``` 此段脚本定义了一个名为`tarjan_scc()`的功能函数接收网络对象作为参数,并返回由集合组成的列表形式的结果集,每个子集中包含了构成单个SCC的所有顶点。最后部分展示了创建测试用DAG实例的过程以及调用上述功能获取最终答案的方式。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值