HDU 1535 Invitation Cards(Dijkstra)
http://acm.hdu.edu.cn/showproblem.php?pid=1535
题意:
题意很简单,给你n个点的有向图,要求n-1个人从1号点走到剩下n-1个点去,计算总距离s1.然后这n-1个人从这n-1个点回到1号点,计算总距离s2.问s1+s2的最小值.(且该图强连通)
分析:
明显去的时候和回来的时候每个人都要走最短路径了.可以用Floyd算法算.但是用两次Dijkstra算法更快.
首先原始有向图我们用Dijkstra求出从1号点到其他所有点的最短距离然后相加即可得s1.
对于其他所有点到1号点的最短距离如何求? 我们只需要将原始边反向.建立一个反向边的有向图,然后用Dijkstra求出1号点到其他所有点的最短距离和即为所求s2.(想想为什么)
AC代码:
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;
const int maxn = 100000+10; //这里如果取100W,会超内存
#define INF 1e9
struct Edge
{
int from,to,dist;
Edge(int f,int t,int d):from(f),to(t),dist(d){}
};
struct HeapNode
{
int d,u;
HeapNode(int d,int u):d(d),u(u){}
bool operator <(const HeapNode &rhs)const
{
return d>rhs.d;
}
};
struct Dijkstra
{
int n,m;
vector<Edge> edges;
vector<int> G[maxn];
bool done[maxn];
int d[maxn];
void init(int n)
{
this->n=n;
for(int i=0;i<n;i++) G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int dist)
{
edges.push_back(Edge(from,to,dist));
m = edges.size();
G[from].push_back(m-1);
}
void dijkstra()
{
priority_queue<HeapNode> Q;
for(int i=0;i<n;i++) d[i]=INF;
d[0]=0;
memset(done,0,sizeof(done));
Q.push(HeapNode(d[0],0));
while(!Q.empty())
{
HeapNode x=Q.top(); Q.pop();
int u=x.u;
if(done[u]) continue;
done[u]= true;
for(int i=0;i<G[u].size();i++)
{
Edge &e=edges[G[u][i]];
if(d[e.to] > d[u]+e.dist)
{
d[e.to] = d[u]+e.dist;
Q.push(HeapNode(d[e.to],e.to));
}
}
}
}
}DJ_1,DJ_2;
int main()
{
int T; scanf("%d",&T);
while(T--)
{
int n,m;
scanf("%d%d",&n,&m);
DJ_1.init(n),DJ_2.init(n);
for(int i=0;i<m;i++)
{
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
u--,v--;
DJ_1.AddEdge(u,v,d);
DJ_2.AddEdge(v,u,d);
}
DJ_1.dijkstra();
DJ_2.dijkstra();
int ans=0;
for(int i=1;i<n;i++)
{
ans += DJ_1.d[i];
ans += DJ_2.d[i];
}
printf("%d\n",ans);
}
return 0;
}