Dijkstra单源最短路径

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u013480600/article/details/44872843

Dijkstra单源最短路径

        给定一个带权有向图G=(V,E) ,其中每条边的权是一个非负实数。另外,还给定 V 中的一个顶点,称为源。现在我们要计算从源到所有其他各顶点的最短路径长度。这里的长度是指路上各边权之和。这个问题通常称为单源最短路径问题。

        下面给出两个计算单源最短路径的模板。

Dijkstra_简化版:时间复杂度O(n^2),不可处理重边图

//计算图的以s点为起点的单源最短路径
//图中节点从1到n编号
//运行dijkstrea之前,需要先把图中两点间的距离保存在dist[i][j]中
//如果i到j不可达,那么dist[i][j]==INF
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define INF 1e8
const int maxn=1000+5;
int n;//图节点数目,从1到n编号
int d[maxn];//单源最短距离
int dist[maxn][maxn];//dist[i][j]表示i到j的有向边长
bool done[maxn];//done[i]表示d[i]是否已经计算完

//进入此函数前,需要将所有边的距离保存在dist中
void dijkstra(int s)
{
    memset(done,0,sizeof(done));
    for(int i=1;i<=n;i++) d[i]=i==s?0:INF;
    for(int i=1;i<=n;i++)
    {
        //x标记当前最短d的点,min_dist记录当前最小距离
        int x, min_dist=INF;

        for(int y=1;y<=n;y++)if(!done[y] && min_dist>=d[y])
        min_dist = d[x=y];

        done[x]=true;

        for(int y=1;y<=n;y++) d[y] = min(d[y],d[x]+dist[x][y]);
    }
}

 

Dijkstra_标准版:时间复杂度O(mlogn),适用于稀疏图,可处理重边图

#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int maxn = 100+5;
#define INF 1e9

struct HeapNode //Dijkstra算法用到的优先队列的节点
{
    int d,u;
    HeapNode(int d,int u):d(d),u(u){}
    bool operator < (const HeapNode &rhs)const
    {
        return d > rhs.d;
    }
};

struct Edge     //边
{
    int from,to,dist;
    Edge(int f,int t,int d):from(f),to(t),dist(d){}
};

struct Dijkstra
{
    int n,m;            //点数和边数,编号都从0开始
    vector<Edge> edges; //边列表
    vector<int> G[maxn];//每个节点出发的边编号(从0开始编号)
    bool done[maxn];    //是否已永久标号
    int d[maxn];        //s到各个点的距离
    int p[maxn];        //p[i]为从起点s到i的最短路中的最后一条边的编号

    void init(int n)
    {
        this->n=n;
        for(int i=0;i<n;i++) G[i].clear();//清空邻接表
        edges.clear();  //清空边列表
    }

    void AddEdge(int from,int to,int dist)
    {//如果是无向图,每条无向边调用两次AddEdge
        edges.push_back(Edge(from,to,dist) );
        m = edges.size();
        G[from].push_back(m-1);
    }

    void dijkstra(int s)//求s到所有点的距离
    {
        priority_queue<HeapNode> Q;
        for(int i=0;i<n;i++) d[i]=INF;
        d[s]=0;
        memset(done,0,sizeof(done));
        Q.push(HeapNode(0,s) );

        while(!Q.empty())
        {
            HeapNode x=Q.top(); Q.pop();
            int u=x.u;
            if(done[u]) continue;
            done[u]= true;

            for(int i=0;i<G[u].size();i++)
            {
                Edge& e= edges[G[u][i]];
                if(d[e.to]> d[u]+e.dist)
                {
                    d[e.to] = d[u]+e.dist;
                    p[e.to] = G[u][i];
                    Q.push(HeapNode(d[e.to],e.to) );
                }
            }
        }
    }
}DJ;

int main()
{
    return 0;
}


 

Dijkstra应用

POJ 1502 MPIMaelstrom(Dijkstra):模板入门。解题报告!

POJ 1062 昂贵的聘礼(Dijkstra):将购买礼物问题转换为最短路径问题。解题报告!

POJ 3037Skiing(Dijkstra):先求各点间的距离,然后直接模板。解题报告!

POJ 2387 Tilthe Cows Come Home(Dijkstra简单题):模板题。解题报告!

POJ 3268Silver Cow Party(Dijkstra):来回的最短距离。解题报告!

POJ 3013 BigChristmas Tree(Dijkstra):基本应用。解题报告!

HDU 1874 畅通工程续(简单Dijkstra):模板题。解题报告!

HDU 3790 最短路径问题(Dijkstra):二维目标条件。解题报告!

HDU 1535Invitation Cards(Dijkstra):求原图与逆图的单源最短路径。解题报告!

HDU 2544 最短路(简单Dijkstra):模板题。解题报告!

HDU 2066 一个人的旅行(Dijkstra):多源点多汇点求最短距离。解题报告!

HDU 1546Idiomatic Phrases Game(Dijkstra):转换为单源最短路径来做。解题报告!

HDU 2962Trucking(Dijkstra+二分):二分高度,判断哪些边能走求最短路径。解题报告!

HDU 1595 findthe longest of the shortest(Dijkstra):删除一条边,求最短路径。解题报告!

HDU 2112 HDUToday(简单Dijkstra):模板题。解题报告!

HDU 1548 Astrange lift(Dijkstra):转化为单源最短路径问题。解题报告!

HDU 4849 Wow!Such City!(Dijkstra):稠密图单源最短路径。解题报告!

HDU 2680Choose the best route(简单Dijkstra):多源单汇问题。解题报告!

HDU 1596 findthe safest road(Dijkstra):距离相加变为系数相乘。解题报告!

HDU 3499Flight(Dijkstra):边权值减半,求最短距离。解题报告!

HDU 3986 HarryPotter and the Final Battle(Dijkstra):删除一条边,求可能的最短距离的最大值。解题报告!

没有更多推荐了,返回首页