图论小结

原创 2016年08月30日 16:47:30

因为最近在搞图论,这部分内容比较杂,有些地方的思路有些相似,先临时总结一下,之后有空在仔细的修订吧

一.强连通分量

先上百科定义有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量(strongly connected components)。那么把定义搞明白了,我们就要学习怎样求解强连通分量了

1.Kosaraju算法

思路大致就是酱紫的,至于问什么嘛,有空再补补算法导论,今天先整理一下

Kosaraju_Algorithm:

•  step1:对原图G进行深度优先遍历,记录每个节点的离开时间。
•  step2:选择具有最晚离开时间的顶点,对反图GT进行遍历,删除能够遍历到的顶点,这些顶点构成一个强连通分量。
•  step3:如果还有顶点没有删除,继续step2,否则算法结束。

 

 

实现齐来也不是很困难,贴一个不错的模板吧

//Kosaraju
const int N =10010, M=50010;
struct node
{
    int to, next;
}edge[M],edge2[M]; //edge是逆图,edge2是原图
int  dfn[N], head[N], head2[N],  belg[N], num[N];
//dfn时间戳
//belg记录每个点属于哪个连通分量,num记录强连通分量点的个数
bool  vis[N];
int cnt,cnt1,scc,tot,tot1;
void dfs1(int u)
{
    vis[u]=1;
    for(int k=head2[u];k!=-1;k=edge2[k].next)
        if(!vis[edge2[k].to]) dfs1(edge2[k].to);
    dfn[++cnt1]=u;
}
void dfs2(int u)
{
    vis[u]=1;
    cnt++;
    belg[u]=scc;
    for(int k=head[u];k!=-1;k=edge[k].next)
        if(!vis[edge[k].to]) dfs2(edge[k].to);
}
void  Kosaraju(int n)
{
    memset(dfn,0,sizeof(dfn));
    memset(vis,0,sizeof(vis));
    cnt1=scc=0;
    for(int i=1;i<=n;i++)
        if(!vis[i]) dfs1(i);
    memset(vis,0,sizeof(vis));
    for(int i=cnt1;i>0;i--)
        if(!vis[dfn[i]])
        {
            cnt=0;
            ++scc;
            dfs2(dfn[i]);
            num[scc] = cnt;
        }
}
void init()
{
    tot=tot1=0;
    memset(head,-1,sizeof(head));
    memset(head2,-1,sizeof(head2));
    memset(num,0,sizeof(num));
}
void addedge(int i,int j)
{
    edge2[tot1].to=j; edge2[tot1].next=head2[i];head2[i]=tot1++;
    edge[tot].to=i; edge[tot].next=head[j];head[j]=tot++;
}


2.tarjan算法

tarjan?太监?发现百科写的好像还不错先放到这里吧

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。
定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。
当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量
接下来是对算法流程的演示。
从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。
返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量
返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。
继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。
至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。
可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。
//Tarjan
const int N =1010, M=100010;
struct node
{
    int to, next;
}edge[M];
int head[N], low[N], dfn[N], sta[N], belg[N], num[N];
bool vis[N];
int scc,index,top, tot;
void tarbfs(int u)
{
    int i,j,k,v;
    low[u]=dfn[u]=++index;
    sta[top++]=u;
    vis[u]=1;
    for(i=head[u];i!=-1;i=edge[i].next)
    {
        v=edge[i].to;
        if(!dfn[v])
        {
            tarbfs(v);
            if(low[u]>low[v]) low[u]=low[v];
        }
        else if(vis[v]&&low[u]>dfn[v]) low[u]=dfn[v];
    }
    if(dfn[u]==low[u])
    {
        scc++;
        do
        {
            v=sta[--top];
            vis[v]=0;
            belg[v]=scc;
            num[scc]++;
        }
        while(v!=u) ;
    }
}
void Tarjan(int n)
{
    memset(vis,0,sizeof(vis));
    memset(dfn,0,sizeof(dfn));
    memset(num,0,sizeof(num));
    memset(low,0,sizeof(low));
    index=scc=top=0;
    for(int i=1;i<=n;i++)
        if(!dfn[i]) tarbfs(i);
}
void init()
{
    tot=0;
    memset(head,-1,sizeof(head));
}
void addedge(int i,int j)
{
    edge[tot].to=j; edge[tot].next=head[i];head[i]=tot++;
}

二.求图的割点

1.图的割点

先解释一下什么叫图的割点吧,割点就是如果去掉这个点之后无法实现所有点的相互连通,那么这个点就是割点。

2.寻找图的割点

那么给定一张图怎么找到图的割点呢,当然了,所谓割点当然应该是一个图里只有一个强联通分量吧,那么说一下我们大致的算法,我们判断一个节点u是否是割点,就是判读他的子节点中是否存在节点不经过这个节点就无法回到祖先,如果是这样的,那么这个节点就是割点。我们用dfn[u]来记录访问到u的时间戳,low[u]来记录u节点在不经过其父节点所能访问到的最早时间戳(就是第一个能够访问到的祖先节点编号),有了这两个数据,那么根据我们上面的算法我们知道如果low[i]>=num[cur](i是cur的子节点),那么也就是说i没法回到祖先,所以说cur应该是割点

3.数据

n个点m个边,无向图

6 7

1 3

1 4

4 2

3 2

2 5

2 6

5 6

用邻接矩阵写的,写的略渣,有空用邻接表写一下

//
//  main.cpp
//  图的割点
//
//  Created by 张嘉韬 on 16/8/29.
//  Copyright © 2016年 张嘉韬. All rights reserved.
//

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=1000;
int min(int a,int b)
{
    if(a<b) return a;
    else return b;
}
int map[maxn][maxn],n,m,x,y,root,flag[maxn],indx,num[maxn],low[maxn];
void dfs(int cur,int father)
{
    int child=0;
    indx++;
    num[cur]=indx;
    low[cur]=indx;
    for(int i=1;i<=n;i++)
    {
        if(map[cur][i]==1)
        {
            if(!num[i])
            {
                dfs(i,cur);// 子节点就去dfs()
                low[cur]=min(low[cur],low[i]);
                if(cur!=root&&low[i]>=num[cur]) flag[cur]=1;
                if(cur==root&&child==2) flag[cur]=1;//虽然未遍历完但是如果有两个两个子节点了那么一定就是割点。
            }
            else if(num[i]&&i!=father)
                low[cur]=min(num[i],low[cur]);
        }
    }
}
int main(int argc, const char * argv[]) {
    freopen("/Users/zhangjiatao/Documents/暑期训练/input.txt","r",stdin);
    memset(map,0,sizeof(map));
    memset(flag,0,sizeof(flag));
    memset(num,0,sizeof(num));
    memset(low,0,sizeof(low));
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d",&x,&y);
        map[x][y]=1;
        map[y][x]=1;
    }
    root=1;
    indx=0;
    dfs(1,root);
    for(int i=1;i<=n;i++) cout<<num[i]<<" ";
    cout<<endl;
    for(int i=1;i<=n;i++) cout<<low[i]<<" ";
    cout<<endl;
    for(int i=1;i<=n;i++)
        if(flag[i]) printf("%d\n",i);
    return 0;
}

三.网络流之最大流问题

思路还是很简单的,每次找一条能够联通起点和终点的路径(增广路),然后在这条路径上减去这条路径的流量(当然就是这条路径的最小边的流量啦),然后这还没完,因为最大流其实是与增广路的顺序有关?(这一点其实还不是很懂,有时间补补再修订),所以当然不可以就这样直接减去了,我们把这些流量都添加到反向的边上,那么这一步的意思很明显,因为我们不确定最终的最大流中一定蕴含着这条边,所以我们让流过去的水流再流回来,那么其实相当于原图是没有发生改变的,那么就不会妨碍到我接着寻找真正在最大流中的增广路啦。

算法步骤:

1。寻找增广路并记录流量

2。在余量图中减去这条增广路的流量,在反向边中加上这个流量,在结果ans中加上这个流量。

3。重复步骤1,直到找不到增广路,那么就结束ans就是答案

试着用邻接表写过一次。。。最后写不下去了,添加反向边用邻接表写起来真的很麻烦

//
//  main.cpp
//  drainage ditches
//
//  Created by 张嘉韬 on 16/8/19.
//  Copyright © 2016年 张嘉韬. All rights reserved.
//

#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
const int maxn=200+10;
const int inf=1<<30;
int n,m,map[maxn][maxn];
int Augment()
{
    int flag=0;
    int pre[maxn];
    int vis[maxn];
    for(int i=0;i<maxn;i++) vis[i]=pre[i]=0;
    queue<int> q;
    q.push(1);
    vis[1]=1;
    pre[1]=0;
    while(!q.empty())
    {
        int temp=q.front();
        q.pop();
        for(int i=1;i<=n;i++)
        {
            if(!vis[i]&&map[temp][i]>0)
            {
                q.push(i);
                vis[i]=1;
                pre[i]=temp;
                if(i==n)
                {
                    flag=1;
                    while(!q.empty()) q.pop();
                }
            }
        }
    }
    if(!flag) return 0;
    int nMinFlow=inf;
    int v=n;
    while(pre[v])
    {
        nMinFlow=min(nMinFlow,map[pre[v]][v]);
        v=pre[v];
    }
    v=n;
    while(pre[v])
    {
        map[pre[v]][v]-=nMinFlow;
        map[v][pre[v]]+=nMinFlow;
        v=pre[v];
    }
    return nMinFlow;
}
int main(int argc, const char * argv[]) {
    //freopen("/Users/zhangjiatao/Documents/暑期训练/input.txt","r",stdin);
    while(scanf("%d%d",&m,&n)!=EOF)
    {
        for(int i=0;i<maxn;i++)
            for(int j=0;j<maxn;j++)
                map[i][j]=0;
        for(int i=1;i<=m;i++)
        {
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            map[u][v]+=w;
        }
        int ans=0,nMinFlow;
        while(nMinFlow=Augment()) ans+=nMinFlow;
        printf("%d\n",ans);
    }
    return 0;
}


四.二分图最大匹配 匈牙利算法

1.二分图

首先啥叫二分图呢,有请度娘:

二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图

2.二分图最大匹配问题

给定一个二分图G,在G的一个子图M中,M的边集中的任意两条边都不依附于同一个顶点,则称M是一个匹配.
选择这样的边数最大的子集称为图的最大匹配问题(maximal matching problem)

3.匈牙利算法

有一个很好的讲解教程点击打开链接

我这里也贴一下我的关于一到模板题的匈牙利算法的见解

 Problem Description

RPG girls今天和大家一起去游乐场玩,终于可以坐上梦寐以求的过山车了。可是,过山车的每一排只有两个座位,而且还有条不成文的规矩,就是每个女生必须找个个男生做partner和她同坐。但是,每个女孩都有各自的想法,举个例子把,Rabbit只愿意和XHD或PQK做partner,Grass只愿意和linle或LL做partner,PrincessSnow愿意和水域浪子或伪酷儿做partner。考虑到经费问题,boss刘决定只让找到partner的人去坐过山车,其他的人,嘿嘿,就站在下面看着吧。聪明的Acmer,你可以帮忙算算最多有多少对组合可以坐上过山车吗?

Input

输入数据的第一行是三个整数K , M , N,分别表示可能的组合数目,女生的人数,男生的人数。0<K<=1000
1<=N 和M<=500.接下来的K行,每行有两个数,分别表示女生Ai愿意和男生Bj做partner。最后一个0结束输入。

Output

对于每组数据,输出一个整数,表示可以坐上过山车的最多组合数。

Sample Input

6 3 3
1 1
1 2
1 3
2 1
2 3
3 1
0

Sample Output

3
很典型的二分图最大匹配问题,匈牙利算法直接可以解决,这篇匈牙利算法讲解很生动:点击打开链接
其实一开始看上面这个教程的时候还是有一些地方不太明白,这里解释一下。
这里我特别想解释一下这个used状态到底起了什么作用,看了上面的教程,我们基本上清楚了每个妹子匹配男生的过程,让我们来模拟一下:
妹子a,找到了男生A
妹子b,找到了男生B
妹子c,找到了男生A,然后我们就要男生A对应的女生a去找新的男生,这个新的男生还不能是男生A,为了这个目的,我们需要让每次妹子找到一个可以匹配的男生的时候都要把他的used状态标记成1,这样需要这个男生的原配女生找其他男生的时候就不会找到男生A了(汗。。。)
//
//  main.cpp
//  HDU 2603
//
//  Created by 张嘉韬 on 16/8/19.
//  Copyright © 2016年 张嘉韬. All rights reserved.
//

#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
using namespace std;
const int maxn=500+10;
int k,m,n,map[maxn][maxn],used[maxn],boy[maxn];
int find(int x)
{
    for(int i=1;i<=n;i++)//遍历所有男生
    {
        if(map[x][i]&&used[i]==0)//这里我想解释一下这个used到底起了什么作用
        {
            used[i]=1; //对所有已经访问过的男生做标记
            if(boy[i]==0||find(boy[i]))
            {
                boy[i]=x;
                return 1;
            }
        }
    }
    return 0;
}
int main(int argc, const char * argv[]) {
    freopen("/Users/zhangjiatao/Documents/暑期训练/input.txt","r",stdin);
    while(scanf("%d%d%d",&k,&m,&n))
    {
        if(k==0) break;
        for(int i=0;i<maxn;i++)
            for(int j=0;j<maxn;j++)
                map[i][j]=0;
        for(int i=1;i<=k;i++)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            map[a][b]=1;
        }
        int r=0;
        for(int i=1;i<=n;i++) boy[i]=0;
        for(int i=1;i<=m;i++)
        {
            for(int j=0;j<maxn;j++) used[j]=0;
            if(find(i)) r++;
        }
        printf("%d\n",r);
    }
    return 0;
}

4.最大流解法

思想很简单,就是用一个超级源点连接U,超级汇点连接V,每一条边的容量为1,然后求解最大流就可以了,因为我们的每一个增广路都对应着一个匹配

二分图最大匹配问题除了匈牙利算法,还有就是最大流增广路算法啊,思路是这样的,
随便找了一张二分图,我们只要给U加一个超级源节点,和一个超级汇点直接求这个图的最大流就可以,然而这样会超时,因为这个算法的时间复杂度是O(m*n)  (n = |V|,  m = |E|),但是匈牙利算法的复杂度二分图的左半边一共有n个点,最多找n条增广路径,如果图中有m条边,每一条增广路径把所有边遍历一遍,所以时间复杂度为O(n*m),要更快一些。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <stack>
using namespace std;
const int maxn=1010;
int map[maxn][maxn],k,m,n;
void init()
{
	for(int i=0;i<maxn;i++)
		for(int j=0;j<maxn;j++)
			map[i][j]=0;
}
int dfs()
{
	int vis[maxn],pre[maxn],flag=0;
	memset(vis,0,sizeof(vis));
	memset(pre,-1,sizeof(pre));
	stack <int> st;
	st.push(0);
	vis[0]=1;
	while(!st.empty())
	{
		int temp=st.top();
		st.pop();
		for(int i=0;i<=m+n+1;i++)
		{
			if(map[temp][i]&&!vis[i])
			{
				vis[i]=1;
				st.push(i);
				pre[i]=temp;
				if(i==m+n+1)
				{
					flag=1;
					break;
				}
			}
		}
	}
	if(flag)
	{
		int k=m+n+1;
		while(k!=0)
		{
			map[pre[k]][k]-=1;
			map[k][pre[k]]+=1;
			k=pre[k];
		}
		return 1;
	}
	else return 0;
}
int main()
{
	//freopen("input.txt","r",stdin);
	while(scanf("%d",&k))
	{
		if(k==0) break;
		init();
		scanf("%d%d",&m,&n);
		for(int i=1;i<=k;i++)
		{
			int u,v;
			scanf("%d%d",&u,&v);
			map[u][v+m]=1;
		}
		for(int i=1;i<=m;i++) map[0][i]=1;
		for(int i=1;i<=n;i++) map[m+i][m+n+1]=1;
		int ans=0,nMinFlow;
		while((nMinFlow=dfs())) ans+=nMinFlow;
		printf("%d\n",ans);
	}
	return 0;
}

5.最大匹配的应用

网络流有许多性质,最大匹配还可以用来解决许多其他问题

二分图匹配中较为重要的三个公式:

二分图最小顶点覆盖 = 二分图最大匹配;

DAG图的最小路径覆盖 = 节点数(n)- 最大匹配数;

二分图最大独立集 = 节点数(n)- 最大匹配数;

五.拓扑排序

 

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

图论专题总结

ACM课程的最后一个专题,图论,其实这个专题还是比较有意思的,不过因为最后课时紧张,讲的也不是很详细。对于图也只是学个皮毛,因为快到期末考试了,题目做的也不是很多,其实还是学的东西不深,后面题目一难就...

图论专题小结:拓扑排序

拓扑排序 拓扑排序是针对有向图进行的,拓扑排序有两个作用:(1)针对某种定义好的“小于”关系为结点排序;(2)判断一个有向图中是否存在有向环。我们可以利用DFS来完成拓扑排序。 下面是判断一个有向图g...

图论专题小结:最大流算法之Dinic算法

在《算法竞赛入门经典(第二版)》中介绍了Edmonds-Karp算法,这种算法虽然易于理解但效率不够高,无法满足竞赛的需求。因此这里给出效率比较快一点的Dinic算法。 Dinic算法 (1)概述:D...

图论小结(一)包括一些最短路,最小生成树,差分约束,欧拉回路,的经典题和变种题。强连通,双连通,割点割桥的应用。二分匹配,KM,支配集,独立集,还有2-SAT。

图论小结(一) 下面是对暑假集训的图论部分的一些总结和体会。 包括一些最短路,最小生成树,差分约束,欧拉回路,的经典题和变种题。强连通,双连通,割点割桥的应用。二分匹配,KM,支配集,独立集,还有2-...
  • ehi11
  • ehi11
  • 2012年08月27日 09:57
  • 6456

图论小结(6.7)

1.几个原来不是很清楚的概念:    二分图的最大独立点集:  在所有顶点中选一些点,使得这个点集内两两之间无连线,那么这个点集就叫做独立点集,而顶点数最多的那个集合就是最大独立集。    最...

图论专题小结:最大流算法之ISAP算法

ISAP算法 ISAP(Improved Shortest Augument Path)算法是改进版的SAP算法,如果对效率要求很高的时候,可以用该算法。 (1)概述:算法基于这样的一个事实:每次增广...

图论专题小结:最小费用最大流算法

一,给定流量F,求最小费用 题意:网络中有两台计算机s,t。现在每秒钟要从s到t传输大小为F的数据到t。该网络中一共有N台计算机,其中有一些靠单向电缆相连接每条电缆用(from,to,cap,cost...

<C/C++算法> 图论基础算法小结(邻接矩阵实现)

1,广度优先搜索算法 广度优先算法(Breadth-First-Search),又称作宽度优先搜索,或横向优先搜索,简称BFS,是一种图形搜索演算法。简单的说,BFS是从根节点开始,沿着树的宽度遍历树...

Java学习IO流小结--字节流

  • 2015年07月11日 14:59
  • 218KB
  • 下载

CSS小结有关整体

  • 2014年10月25日 19:31
  • 36KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:图论小结
举报原因:
原因补充:

(最多只允许输入30个字)