Machine Learning in Action 学习笔记-(2)kNN k近邻算法

转载 2016年06月01日 11:05:26

kNN是最常见的聚类算法,通过比较待测被试特征与训练样本之间的欧式距离,选取k个最近的点,然后找出出现概率最高的label作为我们的预测结果。

其中k的值,随机选择训练样本的方案,训练样本数目的变化都将会影响到我们最终的聚类准确率。

这种基于实例的算法将会使我们无法知道平均实例样本,也将会影响到我们对于典型实例样本特征的理解。

最大的收获是学会了更多的Python命令(在numPy)下的

.argsort() 返回数组中从小到大排列的索引

reload() 重新载入module

line.strip() 去掉所有的回车字符

tile为numPy函数,可以将前面的数组以相同元素扩充成和后面数组相同的维度

dataset.min(0)返回dataset中第一小的值

dataset.max(0)返回dataset中第一大的值

strline.append(A)将A添加到strline的最后作为新元素加入


在面试题中,也会有比如伐木场地址选择等问题,这时候就需要立刻能想到,用kNN算法可能是很好的解决方案


如果想要方便调试程序,可以在spyder的File explorer中选择我们程序所在的文件夹(比如说kNN.py)所在的文件夹然后右击-open Ipython here,这样就可以在这个目录下建立一个Ipython进程了

相关文章推荐

Machine Learning in Action 学习笔记-(4)基于概率论的分类方法:朴素贝叶斯

开篇为我们讲解了许多实际应用情况下,我们可能不需要得到精准的分类,而是属于某一类的概率,以及属于其他类的概率。 这里我就简单的以论坛侮辱性言语检测为例,来讲一下算法的流程。 函数伪代码是: 计算每个类...

Machine Learning In Action - Chapter 2 KNN

Chapter 2 - KNN KNN伪代码 For every point in our dataset: calculate the distance between inX and th...

Machine Learning K近邻算法

  • 2014-12-23 12:47
  • 338KB
  • 下载

机器学习笔记九:K近邻算法(KNN)

KNN原理和实战

Machine Learning in action –kNN(已勘误)

Machine Learning in action –kNN最近在自学机器学习,应导师要求,先把《Machine Learning with R》动手刷了一遍,感觉R真不能算是一门计算机语言,感觉...

Machine Learning In Action -- kNN的python实现

从今天开始同时学习Machine Learning

Machine Learning In Action:KNN(Python)

python3.4实现简单的KNN

Machine Learning In Action -- ID3决策树学习算法的python实现

decision tree Learning 决策树学习笔记 决策树学习是一种相对比较简单的分类学习方法,但是分类效果较好并且表示直观,主要针对离散型目标,它也等价于用if-then规则表示。 ...

机器学习实战(Machine Learning in Action)笔记--Chapter1:机器学习基础

机器学习实战(Machine Learning in Action)笔记–Chapter1:机器学习基础Part1 分类监督学习一般使用两种类型的目标变量:标称型(主要用于分类)、数值型(主要用于回归...

机器学习实战笔记(Python实现)-02-k近邻算法(kNN)

机器学习实战笔记(Python实现)-02-k近邻算法(kNN) -- 下面来看一下书上对这个算法的原理介绍:存在一个训练样本集,并且每个样本都存在标签(有监督学习)。输入没有标签的新样本数据后,将新...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)