tf29: 使用tensorboard可视化inception_v4

这篇博客主要介绍了如何利用TensorFlow 2.9版本,通过TensorBoard对Inception_v4模型进行可视化。作者提供了将训练权重保存为.ckpt和.pb文件的方法,并展示如何将权重固化到图中以便进行预测。同时,还指导了如何使用TensorBoard来观察和理解模型的结构和训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

你要的答案或许都在这里小鹏的博客目录

直接看代码和图示吧:

生成.pb可以参考:

Inception_v4.ckpt是一个TensorFlow模型的检查点文件,它包含了训练好的模型参数。而inception_v4.pb则是该模型的protobuf(Protocol Buffers)格式的持久化版本,通常用于部署和推理。 如果你想要将Inception_v4的检查点转换成pb文件,可以按照以下步骤操作: 1. **安装依赖**:首先确保你已经安装了`tensorflow`库,以及`tf-nightly`或其他支持直接从检查点加载模型的版本。 ```shell pip install tensorflow ``` 2. **加载检查点**:使用`tensorflow`中的函数`load_weights`或`tf.train.Saver`加载检查点模型。 ```python import tensorflow as tf saver = tf.train.import_meta_graph('inception_v4.ckpt.meta') with tf.Session() as sess: saver.restore(sess, 'inception_v4.ckpt') graph_def = sess.graph.as_graph_def() ``` 3. **保存为pb文件**:然后使用`freeze_graph`函数将模型结构和权重转换为pb文件,确保包含`output_node_names`指定的节点作为输出。 ```python from tensorflow.python.framework import graph_util, graph_io output_node_names = "InceptionV4/Logits/SpatialSqueeze" output_graph_def = graph_util.convert_variables_to_constants( sess=sess, input_graph_def=graph_def, output_node_names=[output_node_names]) graph_io.write_graph(output_graph_def, './', 'inception_v4.pb', as_text=False) ``` 现在你已经成功地将inception_v4.ckpt转换成了inception_v4.pb文件,这个文件可以直接用于TensorFlow Serving或者其他需要静态图的应用中。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MachineLP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值