关闭

[数位DP Lucas定理] 2017 计蒜之道 复赛 E. 商汤智能机器人

420人阅读 评论(3) 收藏 举报
分类:

阿爷教导我

i=0(Ai)(A+BiA),A=x+y2,B=xy2

然后就是数位dp+lucas定理的套路了
注意有减法要处理退位 一开始写的时候考虑的有点问题 调了很久很久
这个可以从低到高 也可以从高到低 因为意识模糊就都写了一遍

从高到低

#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long ll;

const int P=100003;
//const int P=3;

ll fac[P],inv[P];

inline void Pre(){
  fac[0]=1; for (int i=1;i<P;i++) fac[i]=fac[i-1]*i%P;
  inv[1]=1; for (int i=2;i<P;i++) inv[i]=(ll)(P-P/i)*inv[P%i]%P;
  inv[0]=1; for (int i=1;i<P;i++) inv[i]=inv[i]*inv[i-1]%P;
}
inline ll C(int n,int m){
  if (n<m) return 0;
  return fac[n]*inv[m]%P*inv[n-m]%P;
}

ll f[10][2][2];

int a[10],m;
int b[10],m0;

inline ll Solve(ll A,ll B){
  ll tt=A+B; while (tt) a[++m]=tt%P,tt/=P;
  tt=A; while (tt) b[++m0]=tt%P,tt/=P;

  f[m+1][0][0]=1;
  for (int s=m;s;s--)
    for (int t=0;t<2;t++)
      for (int k=0;k<2;k++){
    if (f[s+1][t][k]){
      int lim=t==0?a[s]:P-1;
      if (k) a[s]+=P;
      for (int i=0;i<=min(lim,a[s]);i++){
        int nt=t|(i<lim);
        if (a[s]-i<P)
          (f[s][nt][0]+=f[s+1][t][k]*C(b[s],i)%P*C(a[s]-i,b[s])%P)%=P;
        if (i<a[s] && a[s]-i-1<P){
          (f[s][nt][1]+=f[s+1][t][k]*C(b[s],i)%P*C(a[s]-i-1,b[s])%P)%=P;
        }
      }
      if (k) a[s]-=P;
    }
    }
  return (f[1][0][0]+f[1][1][0])%P;
}

int main(){
  freopen("t.in","r",stdin);
  freopen("t2.out","w",stdout);
  ll x,y;
  Pre();
  scanf("%lld%lld",&x,&y);
  if ((x+y)%2!=0 || x<y) return printf("0\n"),0;
  ll A=(x+y)/2,B=(x-y)/2;
  //ll ret=0;
  //for (int i=0;i<=A+B;i++)
  //  ret+=C(A+B-i,A)*C(A,i)%P;
  //printf("%lld\n",ret%P);
  printf("%lld\n",Solve(A,B));
  return 0;
}

从低到高

#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long ll;

const int P=100003;
//const int P=3;

ll fac[P],inv[P];

inline void Pre(){
  fac[0]=1; for (int i=1;i<P;i++) fac[i]=fac[i-1]*i%P;
  inv[1]=1; for (int i=2;i<P;i++) inv[i]=(ll)(P-P/i)*inv[P%i]%P;
  inv[0]=1; for (int i=1;i<P;i++) inv[i]=inv[i]*inv[i-1]%P;
}
inline ll C(int n,int m){
  if (n<m) return 0;
  return fac[n]*inv[m]%P*inv[n-m]%P;
}

ll f[10][2];

int a[10],m;
int b[10],m0;

inline ll Solve(ll A,ll B){
  ll tt=A+B; while (tt) a[++m]=tt%P,tt/=P;
  tt=A; while (tt) b[++m0]=tt%P,tt/=P;

  f[1][0]=1;
  for (int i=1;i<=m;i++)
    for (int t=0;t<2;t++)
      if (f[i][t])
    for (int j=0;j<P;j++)
      if (a[i]-t-j<0)
        (f[i+1][1]+=f[i][t]*C(a[i]+P-t-j,b[i])%P*C(b[i],j)%P)%=P;
      else
        (f[i+1][0]+=f[i][t]*C(a[i]-t-j,b[i])%P*C(b[i],j)%P)%=P;

  return f[m+1][0];
}

int main(){
  ll x,y;
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  Pre();
  scanf("%lld%lld",&x,&y);
  if ((x+y)%2!=0 || x<y || x+y<0) return printf("0\n"),0;
  ll A=(x+y)/2,B=(x-y)/2;
  //ll ret=0;
  //for (int i=0;i<=A+B;i++)
  //  ret+=C(A+B-i,A)*C(A,i)%P;
  //printf("%lld\n",ret%P);
  printf("%lld\n",Solve(A,B));
  return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:262669次
    • 积分:11929
    • 等级:
    • 排名:第1311名
    • 原创:969篇
    • 转载:3篇
    • 译文:0篇
    • 评论:49条
    最新评论