关闭

Triangle

标签: C++leetcode动态规划
74人阅读 评论(0) 收藏 举报
分类:

一、问题描述

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

二、思路

采用dp动态规划算法,其中:

vector<int> vec = triangle.back();
返回二维数组的最后一行元素的引用。整个算法的递归式为:

vec[j] = triangle[i][j] + min(vec[j],vec[j+1]);

三、代码

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {
        if(triangle.empty() || triangle[0].empty()) return 0;
        vector<int> vec = triangle.back();
        for(int i = triangle.size() - 2; i >= 0 ;--i){
            for(int j = 0; j < triangle[i].size();++j){
                vec[j] = triangle[i][j] + min(vec[j],vec[j+1]);
            }
        }
        return vec[0];
    }
};


1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:122411次
    • 积分:4409
    • 等级:
    • 排名:第7027名
    • 原创:341篇
    • 转载:33篇
    • 译文:0篇
    • 评论:5条
    最新评论