Python世界:力扣29题两数相除算法实践

Python世界:力扣29题两数相除算法实践

任务背景

本问题来自于力扣29题,在做完大数相乘后,顺带也看下两数相除。

给定两个整数,被除数dividend和除数divisor。将两数相除,要求不使用乘法、除法和 mod 运算符。

返回被除数dividend除以除数divisor得到的商。

注意提示:目的就是提醒越界问题:-2^31/-1=2&31,超过了整数表达范围。

实现思路

模拟思路

  • 问题核心:只用减法,拼凑,直到小于除数
  • 简化问题:不考虑正负,只考虑纯正数

编码实现

功能函数:

def get_sign(num: int) -> int:
    sign_num = 1
    if num < 0:
        sign_num = -1
    return sign_num


class Solution:
    def divide(self, dividend: int, divisor: int) -> int:
        # 注意处理两者的输入边界,负号取绝对值存在溢出的问题。dividend
        abs_dvd = abs(dividend)
        abs_dvs = abs(divisor)
        sign_dvd = get_sign(dividend)
        sign_dvs = get_sign(divisor)

        # corner case
        if dividend == 0 or abs_dvd < abs_dvs:
            return 0
        if divisor == 1:
            return dividend
        if (divisor == -1):
            if (dividend != -2**31):
                return -dividend
            else:
                return 2**31-1

        # 原始方法,耗时过大
        res = 0
        while (abs_dvd >= abs_dvs):
            abs_dvd -= abs_dvs
            res += 1

        if sign_dvd != sign_dvs:
            res *= -1
        return res

针对27-31行效率问题,倍增加法,加快收敛:

        # 优化版本
        res = 0
        sum_rm = 0 # 记录被减去的总数
        while (abs_dvd >= abs_dvs + sum_rm): # 固定步长,移动sum_rm
            big_step = abs_dvs
            big_cnt = 1
            while (abs_dvd >= big_step + big_step + sum_rm):
                big_step += big_step # 移动步长
                big_cnt += big_cnt # 倍数步长
            sum_rm += big_step # 计入累积步长
            res += big_cnt # 计入累计步数

测试套编写:

# 导入单元测试
import unittest

# 编写测试套
class TestSol(unittest.TestCase):
    def test_bound1(self):
        num1 = 7
        num2 = 1
        ret = 7
        sol = Solution()
        self.assertEqual(sol.divide(num1, num2), ret)

    def test_bound2(self):
        num1 = 7
        num2 = 7
        ret = 1
        sol = Solution()
        self.assertEqual(sol.divide(num1, num2), ret)

    def test_bound3(self):
        num1 = 2147483647
        num2 = -1
        ret = -2147483647
        sol = Solution()
        self.assertEqual(sol.divide(num1, num2), ret)

    def test_bound4(self):
        num1 = -2147483648
        num2 = -2147483648
        ret = 1
        sol = Solution()
        self.assertEqual(sol.divide(num1, num2), ret)

    def test_bound5(self):
        num1 = -2147483648
        num2 = -2
        ret = 1073741824
        sol = Solution()
        self.assertEqual(sol.divide(num1, num2), ret)

    def test_bound6(self):
        num1 = 2147483647
        num2 = 2
        ret = 1073741823
        sol = Solution()
        self.assertEqual(sol.divide(num1, num2), ret)

    def test_special1(self): # 负数极大值场景
        num1 = -2147483648
        num2 = -1
        ret = 2147483647
        sol = Solution()
        self.assertEqual(sol.divide(num1, num2), ret)

    def test_special2(self):
        num1 = -2147483648
        num2 = 1
        ret = -2147483648
        sol = Solution()
        self.assertEqual(sol.divide(num1, num2), ret)

    def test_common_case1(self):
        num1 = 7
        num2 = -3
        ret = -2
        sol = Solution()
        self.assertEqual(sol.divide(num1, num2), ret)

    def test_common_case2(self):
        num1 = 10
        num2 = -3
        ret = -3
        sol = Solution()
        self.assertEqual(sol.divide(num1, num2), ret)

    def test_common_case3(self):
        num1 = 10
        num2 = 3
        ret = 3
        sol = Solution()
        self.assertEqual(sol.divide(num1, num2), ret)

主调逻辑:

# 含测试套版本主调
if __name__ == '__main__':
    print('start!')
    unittest.main() # 启动单元测试
    print('done!')

本文小结

除法运算本质是减法,从理解原理到真正实现还是有距离,建议初步理解后,不参考任何代码,完全自己复现一遍,体会更深。

  • 先完成粗略的(核心的)
  • 再处理corner case
  • 再优化提效

参考资料

  1. LeetCode题目P29,两数相除
  2. P29题解参考
目描述: 给你两个版本号 version1 和 version2 ,请你比较它们。 版本号由一个或多个修订号组成,各修订号由一个 '.' 连接。每个修订号由多位数字组成,可能包含前导零。每个版本号至少包含一个字符。修订号从左到右编号,下标从0开始,最左边的修订号下标为0 ,下一个修订号下标为1,以此类推。例如,2.5.33 和 0.1 都是有效的版本号。 比较版本号时,请按从左到右的顺序依次比较它们的修订号。比较修订号时,只需比较忽略任何前导零后的整数值。也就是说,修订号1和修订号001相等。如果版本号没有指定某个下标处的修订号,则该修订号视为0。例如,版本1.0 小于版本1.1,因为它们下标为0的修订号相同,而下标为1的修订号分别为0和1,0 < 1。 返回规则如下: 如果 version1 > version2 返回 1, 如果 version1 < version2 返回 -1, 否则返回 0。 示例 1: 输入:version1 = "1.01", version2 = "1.001" 输出:0 解释:忽略前导零,"01" 和 "001" 都表示相同的整数 "1" 示例 2: 输入:version1 = "1.0", version2 = "1.0.0" 输出:0 解释:version1 没有指定下标为 2 的修订号,即视为 "0" 示例 3: 输入:version1 = "0.1", version2 = "1.1" 输出:-1 解释:version1 中下标为 0 的修订号是 0,version2 中下标为 0 的修订号是 1 。0 < 1,所以 version1 < version2 示例 4: 输入:version1 = "1.0.1", version2 = "1" 输出:1 示例 5: 输入:version1 = "7.5.2.4", version2 = "7.5.3" 输出:-1 提示: 1 <= version1.length, version2.length <= 500 version1 和 version2 仅包含数字和 '.' version1 和 version2 都是 有效版本号
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值