HDOJ 2181 哈密顿绕行世界问题 (dfs)

原创 2012年03月24日 10:59:15
一个规则的实心十二面体,它的 20个顶点标出世界著名的20个城市,你从一个城市出发经过每个城市刚好一次后回到出发的城市。
 
Input
前20行的第i行有3个数,表示与第i个城市相邻的3个城市.第20行以后每行有1个数m,m<=20,m>=1.m=0退出.
 
Output
输出从第m个城市出发经过每个城市1次又回到m的所有路线,如有多条路线,按字典序输出,每行1条路线.每行首先输出是第几条路线.然后个一个: 后列出经过的城市.参看Sample output
Sample Input
2 5 20
1 3 12
2 4 10
3 5 8
1 4 6
5 7 19
6 8 17
4 7 9
8 10 16
3 9 11
10 12 15
2 11 13
12 14 20
13 15 18
11 14 16
9 15 17
7 16 18
14 17 19
6 18 20
1 13 19
5
0
Sample Output
1:  5 1 2 3 4 8 7 17 18 14 15 16 9 10 11 12 13 20 19 6 5
2:  5 1 2 3 4 8 9 10 11 12 13 20 19 18 14 15 16 17 7 6 5
3:  5 1 2 3 10 9 16 17 18 14 15 11 12 13 20 19 6 7 8 4 5
4:  5 1 2 3 10 11 12 13 20 19 6 7 17 18 14 15 16 9 8 4 5
5:  5 1 2 12 11 10 3 4 8 9 16 15 14 13 20 19 18 17 7 6 5
6:  5 1 2 12 11 15 14 13 20 19 18 17 16 9 10 3 4 8 7 6 5
7:  5 1 2 12 11 15 16 9 10 3 4 8 7 17 18 14 13 20 19 6 5
8:  5 1 2 12 11 15 16 17 18 14 13 20 19 6 7 8 9 10 3 4 5
9:  5 1 2 12 13 20 19 6 7 8 9 16 17 18 14 15 11 10 3 4 5
10:  5 1 2 12 13 20 19 18 14 15 11 10 3 4 8 9 16 17 7 6 5
11:  5 1 20 13 12 2 3 4 8 7 17 16 9 10 11 15 14 18 19 6 5
12:  5 1 20 13 12 2 3 10 11 15 14 18 19 6 7 17 16 9 8 4 5
13:  5 1 20 13 14 15 11 12 2 3 10 9 16 17 18 19 6 7 8 4 5
14:  5 1 20 13 14 15 16 9 10 11 12 2 3 4 8 7 17 18 19 6 5
15:  5 1 20 13 14 15 16 17 18 19 6 7 8 9 10 11 12 2 3 4 5
16:  5 1 20 13 14 18 19 6 7 17 16 15 11 12 2 3 10 9 8 4 5
17:  5 1 20 19 6 7 8 9 10 11 15 16 17 18 14 13 12 2 3 4 5
18:  5 1 20 19 6 7 17 18 14 13 12 2 3 10 11 15 16 9 8 4 5
19:  5 1 20 19 18 14 13 12 2 3 4 8 9 10 11 15 16 17 7 6 5
20:  5 1 20 19 18 17 16 9 10 11 15 14 13 12 2 3 4 8 7 6 5
21:  5 4 3 2 1 20 13 12 11 10 9 8 7 17 16 15 14 18 19 6 5
22:  5 4 3 2 1 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
23:  5 4 3 2 12 11 10 9 8 7 6 19 18 17 16 15 14 13 20 1 5
24:  5 4 3 2 12 13 14 18 17 16 15 11 10 9 8 7 6 19 20 1 5
25:  5 4 3 10 9 8 7 6 19 20 13 14 18 17 16 15 11 12 2 1 5
26:  5 4 3 10 9 8 7 17 16 15 11 12 2 1 20 13 14 18 19 6 5
27:  5 4 3 10 11 12 2 1 20 13 14 15 16 9 8 7 17 18 19 6 5
28:  5 4 3 10 11 15 14 13 12 2 1 20 19 18 17 16 9 8 7 6 5
29:  5 4 3 10 11 15 14 18 17 16 9 8 7 6 19 20 13 12 2 1 5
30:  5 4 3 10 11 15 16 9 8 7 17 18 14 13 12 2 1 20 19 6 5
31:  5 4 8 7 6 19 18 17 16 9 10 3 2 12 11 15 14 13 20 1 5
32:  5 4 8 7 6 19 20 13 12 11 15 14 18 17 16 9 10 3 2 1 5
33:  5 4 8 7 17 16 9 10 3 2 1 20 13 12 11 15 14 18 19 6 5
34:  5 4 8 7 17 18 14 13 12 11 15 16 9 10 3 2 1 20 19 6 5
35:  5 4 8 9 10 3 2 1 20 19 18 14 13 12 11 15 16 17 7 6 5
36:  5 4 8 9 10 3 2 12 11 15 16 17 7 6 19 18 14 13 20 1 5
37:  5 4 8 9 16 15 11 10 3 2 12 13 14 18 17 7 6 19 20 1 5
38:  5 4 8 9 16 15 14 13 12 11 10 3 2 1 20 19 18 17 7 6 5
39:  5 4 8 9 16 15 14 18 17 7 6 19 20 13 12 11 10 3 2 1 5
40:  5 4 8 9 16 17 7 6 19 18 14 15 11 10 3 2 12 13 20 1 5
41:  5 6 7 8 4 3 2 12 13 14 15 11 10 9 16 17 18 19 20 1 5
42:  5 6 7 8 4 3 10 9 16 17 18 19 20 13 14 15 11 12 2 1 5
43:  5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5
44:  5 6 7 8 9 16 17 18 19 20 1 2 12 13 14 15 11 10 3 4 5
45:  5 6 7 17 16 9 8 4 3 10 11 15 14 18 19 20 13 12 2 1 5
46:  5 6 7 17 16 15 11 10 9 8 4 3 2 12 13 14 18 19 20 1 5
47:  5 6 7 17 16 15 11 12 13 14 18 19 20 1 2 3 10 9 8 4 5
48:  5 6 7 17 16 15 14 18 19 20 13 12 11 10 9 8 4 3 2 1 5
49:  5 6 7 17 18 19 20 1 2 3 10 11 12 13 14 15 16 9 8 4 5
50:  5 6 7 17 18 19 20 13 14 15 16 9 8 4 3 10 11 12 2 1 5
51:  5 6 19 18 14 13 20 1 2 12 11 15 16 17 7 8 9 10 3 4 5
52:  5 6 19 18 14 15 11 10 9 16 17 7 8 4 3 2 12 13 20 1 5
53:  5 6 19 18 14 15 11 12 13 20 1 2 3 10 9 16 17 7 8 4 5
54:  5 6 19 18 14 15 16 17 7 8 9 10 11 12 13 20 1 2 3 4 5
55:  5 6 19 18 17 7 8 4 3 2 12 11 10 9 16 15 14 13 20 1 5
56:  5 6 19 18 17 7 8 9 16 15 14 13 20 1 2 12 11 10 3 4 5
57:  5 6 19 20 1 2 3 10 9 16 15 11 12 13 14 18 17 7 8 4 5
58:  5 6 19 20 1 2 12 13 14 18 17 7 8 9 16 15 11 10 3 4 5
59:  5 6 19 20 13 12 11 10 9 16 15 14 18 17 7 8 4 3 2 1 5
60:  5 6 19 20 13 14 18 17 7 8 4 3 10 9 16 15 11 12 2 1 5

code:
#include <stdio.h>
typedef struct
{
	int dir[3];
}node;
node row[22];
int used[21], count = 0, ans[21], m = 0, k = 0;
void dfs(int x)
{
	int i = 0;
	if(k == 19 && (row[x].dir[0] == m || row[x].dir[1] == m || row[x].dir[2]==m))
	{
		printf("%d:  ",++count);
		printf("%d ",m);
		for(i = 0; i<k; i++)
			printf("%d ",ans[i]);
		printf("%d\n",m);
	}
	else
	{
		for(i = 0; i<3; i++)
		{
			if(!used[row[x].dir[i]])
			{
				ans[k++] = row[x].dir[i];
				used[row[x].dir[i]] = 1;
				dfs(row[x].dir[i]);
				used[row[x].dir[i]] = 0;
				k--;
			}
		}
	}
}
int main()
{
	int i = 0;
	for(i = 1; i<21; i++)
		scanf("%d %d %d",&row[i].dir[0], &row[i].dir[1], &row[i].dir[2]);
	while(scanf("%d",&m)  , m)
	{
		for(i = 1; i<21; i++)
			used[i] = 0;
		k = 0;
		used[m] = 1;
		dfs(m);
	}
	return 0;
}



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

HDOJ--2181--哈密顿绕行世界问题【DFS】

Problem Description 一个规则的实心十二面体,它的 20个顶点标出世界著名的20个城市,你从一个城市出发经过每个城市刚好一次后回到出发的城市。    Input 前20行...

HDU2181:哈密顿绕行世界问题(DFS) (C)

Problem Description 一个规则的实心十二面体,它的 20个顶点标出世界著名的20个城市,你从一个城市出发经过每个城市刚好一次后回到出发的城市。    Input 前20行的第i行...

哈密顿绕行世界问题 HDU - 2181 DFS

哈密顿绕行世界问题 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota...
  • khn64
  • khn64
  • 2017-07-29 20:57
  • 52

HDU-2181-哈密顿绕行世界问题(DFS)

哈密顿绕行世界问题Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...

HDU-2181-哈密顿绕行世界问题(DFS)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2181 哈密顿绕行世界问题 Problem Description 一个规则的实心...

hdu(2181):哈密顿绕行世界问题,dfs遍历

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2181 此题真的是一个水题,当然也只有这种题目才给了我前进的动力,要是一直被各种打压,岂不得累死! ...

(step4.3.8)hdu 2181(哈密顿绕行世界问题——DFS)

题目大意:通俗点讲就是,输出所有从m城市出发,便利所有城市之后又能回到m城市的序列...... 解题思路:DFS 1)用map[][]来存储城市之间的连通情况.用used[]存储某个城市的...

hdu 2181 哈密顿绕行世界问题 ——dfs

题目: F - 哈密顿绕行世界问题 Time Limit:1000MS     Memory Limit:32768KB     64bit IO&#...

DFS深度优先搜索(3)--hdu2181(哈密顿绕行世界问题)(基础题)

哈密顿绕行世界问题                                 Time Limit:1000MS ...

HDU 2181 哈密顿绕行世界问题(水DFS)

该题乍看很难的样子,其实就是个水DFS,因为要打印所有可能方案,所以无法剪枝,直接遍历所有可能情况就行。 细节参见代码: #include #include #include #include #...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)