Pytorch简介

博客提示更多内容可在GitHub查看。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 关于PyTorch简介性论文 针对寻找有关PyTorch简介性论文的需求,通常这类资源会出现在官方文档或是由社区贡献者撰写的综述文章中。一份具有代表性的概述性文件是由Facebook AI Research团队发布的原始论文《Automatic Differentiation in PyTorch》[^1]。该论文不仅介绍了PyTorch的设计理念和发展历程,还深入探讨了自动微分机制及其动态计算图特性。 此外,《Deep Learning with Python and PyTorch》也是一份不错的入门指南,虽然不是严格意义上的学术论文,但对于理解和掌握PyTorch框架非常有帮助。这份资料详细解释了如何利用Python编程语言结合PyTorch库来构建和训练深度学习模型。 对于希望深入了解分布式训练特性的读者来说,《Data distributed, part 1: process initialization》提供了关于PyTorch在多节点环境下执行并行化操作的具体细节[^3]。文中提到PyTorch通过DistributedDataParallel实现了高效的跨设备协作能力,支持多种后端协议如Open MPI、NVIDIA NCCL及Gloo等。 最后,在考虑大规模模型训练时,《已有方法(按照论文中介绍)分为三种...》一文讨论了几种常见的并行处理方式——模型并行(Model Parallelism)、数据并行(Data Parallelism),以及参数减少(Parameter Reduction)[^4]。这些技术能够有效缓解单机难以承载超大型网络结构的问题,并为实际应用中的性能优化指明方向。 ```python import torch print(torch.__version__) ``` 此代码片段用于验证安装环境下的PyTorch版本号,确保后续实验所需依赖项正确无误。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值