版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

《Deep Learning》译文 第六章 深度前馈网络 前言

第六章    深度前馈网络    深度前馈网络,也常常被叫做前馈神经网络,或者多层感知机(MLPs),是经典的深度学习模型。前馈网络的主要目标是逼近某个函数f*。比如说,对于一个分类器,y=f*(x)...

TensorFlow学习笔记(4)----完整的工程示例:全连接前馈网络识别MNIST

介绍一个尽量完整的TF工程应该包含的东西,以及比较规范的写法,有良好的扩展性

前馈网络及反向传播

本文主要介绍多层感知器模型(MLP),它也可以看成是一种logister回归,输入层通过非线性转换,即通过隐含层把输入投影到线性可分的空间中。 如果我们在中间加一层神经元作为隐含层,则它的结构如...

神经网络基本介绍(三):前馈网络(上)M-P model 和单层感知机

上图是前馈网络基本结构,分别介绍几种前馈网络: M-P model,single-layer perceptron network,multi-layer perceptron network, BP...

deep learning 模型简介之CNN卷积网络(一)深度解析CNN

本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流。 [1]Deep learning简介 [2]Deep Lear...

[深度学习基础] 3. 前馈神经网络

多层前馈神经网络 (multilayer feedforward nueral network), 也称为多层感知器 (multilayer perceptrons, MLP), 它利用上一章讨论的线...

深度学习的相关简介

  • 2017-07-09 17:42
  • 33KB
  • 下载

深度学习简介--PPT

小记:前些天导师让我给大家介绍下深度学习。做了几页PPT,做了个小介绍。

深度学习简介

查看最新论文 Yoshua Bengio, Learning Deep Architectures for AI, Foundations and Trends in Machine Learnin...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)