关闭
当前搜索:

[置顶] 教你如何迅速秒杀掉:99%的海量数据处理面试题

教你如何迅速秒杀掉:99%的海量数据处理面试题作者:July出处:结构之法算法之道blog前言   一般而言,标题含有“秒杀”,“99%”,“史上最全/最强”等词汇的往往都脱不了哗众取宠之嫌,但进一步来讲,如果读者读罢此文,却无任何收获,那么,我也甘愿背负这样的罪名,:-),同时,此文可以看做是对这篇文章:十道海量数据处理面试题与十个方法大总结的一般抽象性总结。    毕竟受文章和理论之限,本文将...
阅读(530167) 评论(285)

从Hadoop框架与MapReduce模式中谈海量数据处理(含淘宝技术架构)

从hadoop框架与MapReduce模式中谈海量数据处理前言    几周前,当我最初听到,以致后来初次接触Hadoop与MapReduce这两个东西,我便稍显兴奋,觉得它们很是神秘,而神秘的东西常能勾起我的兴趣,在看过介绍它们的文章或论文之后,觉得Hadoop是一项富有趣味和挑战性的技术,且它还牵扯到了一个我更加感兴趣的话题:海量数据处理。    由此,最近凡是空闲时,便在看“Hadoop”,“...
阅读(175279) 评论(61)

海量数据处理面试题集锦

十七道海量数据处理面试题与Bit-map详解作者:小桥流水,redfox66,July。前言    本博客内曾经整理过有关海量数据处理的10道面试题(十道海量数据处理面试题与十个方法大总结),此次除了重复了之前的10道面试题之后,重新多整理了7道。仅作各位参考,不作它用。    同时,程序员编程艺术系列将重新开始创作,第十一章以后的部分题目来源将取自下文中的17道海量数据处理的面试题。因为,我们觉...
阅读(135165) 评论(106)

海量数据处理之Bloom Filter详解

海量数据处理之Bloom Filter详解  前言    本博客内曾已经整理过十道海量数据处理面试题与十个方法大总结。接下来,本博客内会重点分析那些海量数据处理的方法,并重写十道海量数据处理的面试题。如果有任何问题,欢迎不吝指正。谢谢。一、什么是Bloom Filter    Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集...
阅读(77410) 评论(10)

十道海量数据处理面试题与十个方法大总结

海量数据处理:十道面试题与十个海量数据处理方法总结作者:July、youwang、yanxionglu。时间:二零一一年三月二十六日本文之总结:教你如何迅速秒杀掉:99%的海量数据处理面试题。有任何问题,欢迎随时交流、指正。出处:http://blog.csdn.net/v_JULY_v。 第一部分、十道海量数据处理面试题1、海量日志数据,提取出某日访问百度次数最多的那个IP。      首先是这...
阅读(340549) 评论(184)
    个人资料
    • 访问:13584003次
    • 积分:50384
    • 等级:
    • 排名:第70名
    • 原创:159篇
    • 转载:0篇
    • 译文:6篇
    • 评论:13929条
    博主简介
    July,于2010年10月11日开始在CSDN上写博(搜索:“结构之法”,进入本博客),博客专注面试、算法、机器学习。2015年正式创业,七月在线创始人兼CEO,公司官网:七月在线(https://www.julyedu.com/),微博@研究者July。新书《编程之法》15年10月14日起正式上市。JulyEdu AI 交流Q群:204292834。July,2018/1月。
    July和他朋友们的创业平台
    我的微博
    July新书《编程之法》上市
    博客专栏
    最新评论