如何通透理解:BFS和DFS优先搜索算法(23年修订版)

前言

本文最早写于二零一一年一月一日,十余年过去,如今再看,之前写的确实一言难尽(包括评论区也有不少朋友指出文章质量、文章排版都有待提高),故重写本文

第一部分 什么是BFS与DFS

1.1 什么是BFS

BFS(广度优先搜索)是一种图遍历算法,它从一个起始点开始,逐层扩展搜索范围,直到找到目标节点为止。

这种算法通常用于解决“最短路径”问题,比如在迷宫中找到从起点到终点的最短路径

  1. 首先,你会从起点开始,检查所有与它相邻的位置,也就是距离起点为1的位置
  2. 然后,你会继续向外扩展,检查所有距离起点为2的位置,以此类推,直到找到出口

在BFS中,你可以使用队列来存储待搜索的节点。起始点首先加入队列中,然后不断从队列中取出节点,检查它是否是目标节点。如果不是,就将它的所有未被访问过的邻居加入队列中。这样,队列中的节点总是按照它们距离起点的距离排序,先加入队列的节点总是先被取出来搜索。

通过这种方式,BFS可以找到起点到目标节点的最短路径。在实际应用中,BFS还可以用于拓扑排序、连通性检测等问题的解决。

1.2 什么是DFS

DFS(深度优先搜索)是一种图遍历算法,它从一个起始点开始,一直往下走直到不能再走为止,然后返回到前一个节点,继续探索它的其他分支,直到找到目标节点为止。这种算法通常用于解决“遍历”问题,比如在树中查找所有的叶子节点。

要理解DFS,也还可以想象自己在迷宫中寻找所有可行的路径

  1. 首先,你会从起点开始,顺着一条路一直走,直到你走到一个死胡同
  2. 再返回到前一个节点,继续探索其他分支

在探索过程中,你可以使用栈来存储已经访问过的节点,以便后续回溯。

在DFS中,你可以使用递归或栈来实现深度优先搜索。通过这种方式,DFS可以找到所有可行的路径,或者在树中查找所有的叶子节点。

在实际应用中,DFS还可以用于拓扑排序、连通性检测等问题的解决。与BFS相比,DFS通常更适合处理深度优先的问题,而BFS更适合处理广度优先的问题。

1.3 BFS与DFS的比较

 如果分别用DFS 与 BFS 将二叉树的所有结点遍历一遍,那么它们遍历结点的顺序分别如下所示

接下来,让我们先看看在二叉树上进行 BFS 遍历和 DFS 遍历的代码比较

首先是DFS 遍历使用递归(递归的方式隐含地使用了系统的栈):

void dfs(TreeNode* root) 
{
    if (root == nullptr) 
    {
        return;
    }
    // 依次递归遍历它的左子树和右子树
    dfs(root->left);
    dfs(root->right);
}

其次,BFS 遍历使用队列数据结构:

void bfs(TreeNode* root) 
{
    // 创建一个队列
    queue<TreeNode*> q;
    q.push(root);
    while (!q.empty()) 
    {
        // 在每次循环中,使用 q.front() 获取队头节点,并将其出队
        TreeNode* node = q.front();
        q.pop();

        // 检查这个节点的左右子节点是否为空,如果不为空,就将它们加入队列中
        if (node->left != nullptr) 
        {
            q.push(node->left);
        }
        if (node->right != nullptr)
        {
            q.push(node->right);
        }
    }
}

第二部分 应用BFS求解的典型问题:层序遍历

例题:二叉树的层序遍历

给定一个二叉树,返回其按层序遍历得到的节点值。 层序遍历即逐层地、从左到右访问所有结点。

什么是层序遍历呢?简单来说,层序遍历就是把二叉树分层,然后每一层从左到右遍历 (配图来源):

乍一看,这个遍历顺序和 BFS 是一样的,我们可以直接用 BFS 得出层序遍历结果。然而,层序遍历要求的输入结果和 BFS 是不同的。层序遍历要求我们区分每一层,也就是返回一个二维数组。而 BFS 的遍历结果是一个一维数组,无法区分每一层。

 那么,怎么给 BFS 遍历的结果分层呢?我们首先来观察一下 BFS 遍历的过程中,结点进队列和出队列的过程:

 截取 BFS 遍历过程中的某个时刻:

可以看到,此时队列中的结点是 3、4、5,分别来自第 1 层和第 2 层。这个时候,第 1 层的结点还没出完,第 2 层的结点就进来了,而且两层的结点在队列中紧挨在一起,我们 无法区分队列中的结点来自哪一层。

因此,我们需要稍微修改一下代码,在每一层遍历开始前,先记录队列中的结点数量n(也就是这一层的结点数量),然后一口气处理完这一层的n个结点。

// 二叉树的层序遍历
void bfs(TreeNode* root) 
{
    queue<TreeNode*> q;
    q.push(root);
    while (!q.empty()) 
    {
        int n = q.size();
        for (int i = 0; i < n; i++) 
        {
            TreeNode* node = q.front();
            q.pop();
            if (node->left != nullptr) 
            {
                q.push(node->left);
            }
            if (node->right != nullptr) 
            {
                q.push(node->right);
            }
        }
    }
}

这样,我们就将 BFS 遍历改造成了层序遍历。在遍历的过程中,结点进队列和出队列的过程为:

可以看到,在 while 循环的每一轮中,都是将当前层的所有结点出队列,再将下一层的所有结点入队列,这样就实现了层序遍历。

最终我们得到的题解代码为:

vector<vector<int>> levelOrder(TreeNode* root) 
{
    vector<vector<int>> res;
    queue<TreeNode*> q;
    if (root != nullptr) 
    {
        q.push(root);
    }
    while (!q.empty()) 
    {
        int n = q.size();
        vector<int> level;
        for (int i = 0; i < n; i++) 
        {
            TreeNode* node = q.front();
            q.pop();
            level.push_back(node->val);
            if (node->left != nullptr) 
            {
                q.push(node->left);
            }
            if (node->right != nullptr) 
            {
                q.push(node->right);
            }
        }
        res.push_back(level);
    }
    return res;
}

<think>好的,我现在需要回答用户关于DFSBFS算法区别与实现的问题。首先,我得回忆这两个算法的基本概念,确保自己理解正确。DFS是深度优先搜索,也就是尽可能深地遍历树的节点,直到到达叶子节点再回溯。而BFS是广度优先搜索,逐层扩展,先访问离起点近的节点。这是它们的核心区别。 接下来,我需要明确它们的区别,可能包括遍历顺序、数据结构、空间复杂度等方面。比如,DFS通常用栈或递归实现,而BFS用队列。空间复杂度方面,BFS在最坏情况下可能比DFS高,尤其是当树比较宽的时候。 然后,实现部分,用户可能需要代码示例。DFS可以用递归或者显式的栈来实现,而BFS一般用队列。我需要写出这两种算法的Python代码,确保语法正确,并且加上注释说明。 还要注意用户提到的系统级指令,比如数学表达式要用$...$格式,独立公式用$$...$$,不过这个问题可能数学公式不多,但如果有涉及树或图的节点数、层数等,可能需要用到。例如,树的高度h,BFS的时间复杂度是$O(n)$,而DFS可能是$O(h)$,但得根据具体情况判断。 另外,用户要求生成相关问题,我需要想几个相关的问题,比如比较它们的优缺点,应用场景,或者如何选择两者等。这些问题应该能帮助用户进一步学习。 现在,检查是否有引用需要添加。用户提供的引用[1][2]提到了DFSBFS的原理结构,所以在回答中可以引用这些内容,特别是在提到它们的遍历方式时,比如引用[^2]说明它们搜索的结构像树,DFS深入,BFS逐层扩展。 最后,确保回答结构清晰,分点说明区别,代码部分用正确的格式,语言用中文,没有使用任何markdown,符合用户的要求。可能需要多次检查LaTeX语法是否正确,比如变量是否用$包围,是否有拼写错误等。 总结步骤: 1. 介绍DFSBFS的基本概念,引用提供的资料。 2. 分点列出它们的区别,包括遍历顺序、数据结构、空间复杂度、应用场景等。 3. 提供实现代码,Python的递归DFS、栈实现的DFS,队列实现的BFS。 4. 生成相关问题,如优缺点比较、应用例子、如何选择等。 5. 确保所有引用正确添加,比如在提到遍历结构时引用。</think>### DFS BFS 算法的区别与实现 #### 一、基本概念 1. **DFS(深度优先搜索)**:从起点出发,尽可能深地遍历分支,直到无法继续再回溯到上一个节点,尝试其他分支。搜索结构像一棵树,优先探索“深度”。 2. **BFS(广度优先搜索)**:从起点出发,逐层扩展,先访问离起点最近的节点。搜索时按“层级”逐步推进。 #### 二、核心区别 | 特性 | DFS | BFS | |--------------|------------------------------|------------------------------| | **遍历顺序** | 深度优先(纵向) | 广度优先(横向) | | **数据结构** | 栈(递归或显式栈) | 队列 | | **空间复杂度** | $O(h)$(h为树的高度) | $O(w)$(w为树的最大宽度) | | **应用场景** | 解决连通性、路径存在性问题 | 最短路径、层级遍历 | #### 三、实现代码 ##### 1. DFS 实现(递归) ```python def dfs_recursive(graph, node, visited): if node not in visited: print(node) # 处理当前节点 visited.add(node) for neighbor in graph[node]: dfs_recursive(graph, neighbor, visited) # 示例图的邻接表 graph = { 'A': ['B', 'C'], 'B': ['D', 'E'], 'C': ['F'], 'D': [], 'E': ['F'], 'F': [] } visited = set() dfs_recursive(graph, 'A', visited) # 从节点A开始 ``` ##### 2. DFS 实现(显式栈) ```python def dfs_stack(graph, start): stack = [start] visited = set() while stack: node = stack.pop() if node not in visited: print(node) # 处理当前节点 visited.add(node) # 按逆序压栈以保证与递归顺序一致 for neighbor in reversed(graph[node]): stack.append(neighbor) ``` ##### 3. BFS 实现(队列) ```python from collections import deque def bfs_queue(graph, start): queue = deque([start]) visited = set() while queue: node = queue.popleft() if node not in visited: print(node) # 处理当前节点 visited.add(node) for neighbor in graph[node]: queue.append(neighbor) ``` #### 四、应用场景对比 - **DFS适用场景**: - 拓扑排序(如任务依赖解析) - 检测图中的环 - 解决迷宫问题(只需判断是否存在路径) - **BFS适用场景**: - 社交网络中的“最短关系链” - 无权图的最短路径(如迷宫最短路径) - 网页爬虫按层级抓取 #### 五、性能分析 - **DFS空间优势**:递归深度与树高相关,适合纵深大的结构。 - **BFS时间优势**:若解靠近起点,BFS能更快找到最短路径,但可能占用更多内存[^1]。
评论 48
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

v_JULY_v

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值