如何通透理解:BFS和DFS优先搜索算法(23年修订版)

前言

本文最早写于二零一一年一月一日,十余年过去,如今再看,之前写的确实一言难尽(包括评论区也有不少朋友指出文章质量、文章排版都有待提高),故重写本文

第一部分 什么是BFS与DFS

1.1 什么是BFS

BFS(广度优先搜索)是一种图遍历算法,它从一个起始点开始,逐层扩展搜索范围,直到找到目标节点为止。

这种算法通常用于解决“最短路径”问题,比如在迷宫中找到从起点到终点的最短路径

  1. 首先,你会从起点开始,检查所有与它相邻的位置,也就是距离起点为1的位置
  2. 然后,你会继续向外扩展,检查所有距离起点为2的位置,以此类推,直到找到出口

在BFS中,你可以使用队列来存储待搜索的节点。起始点首先加入队列中,然后不断从队列中取出节点,检查它是否是目标节点。如果不是,就将它的所有未被访问过的邻居加入队列中。这样,队列中的节点总是按照它们距离起点的距离排序,先加入队列的节点总是先被取出来搜索。

通过这种方式,BFS可以找到起点到目标节点的最短路径。在实际应用中,BFS还可以用于拓扑排序、连通性检测等问题的解决。

1.2 什么是DFS

DFS(深度优先搜索)是一种图遍历算法,它从一个起始点开始,一直往下走直到不能再走为止,然后返回到前一个节点,继续探索它的其他分支,直到找到目标节点为止。这种算法通常用于解决“遍历”问题,比如在树中查找所有的叶子节点。

要理解DFS,也还可以想象自己在迷宫中寻找所有可行的路径

  1. 首先,你会从起点开始,顺着一条路一直走,直到你走到一个死胡同
  2. 再返回到前一个节点,继续探索其他分支

在探索过程中,你可以使用栈来存储已经访问过的节点,以便后续回溯。

在DFS中,你可以使用递归或栈来实现深度优先搜索。通过这种方式,DFS可以找到所有可行的路径,或者在树中查找所有的叶子节点。

在实际应用中,DFS还可以用于拓扑排序、连通性检测等问题的解决。与BFS相比,DFS通常更适合处理深度优先的问题,而BFS更适合处理广度优先的问题。

1.3 BFS与DFS的比较

 如果分别用DFS 与 BFS 将二叉树的所有结点遍历一遍,那么它们遍历结点的顺序分别如下所示

接下来,让我们先看看在二叉树上进行 BFS 遍历和 DFS 遍历的代码比较

首先是DFS 遍历使用递归(递归的方式隐含地使用了系统的栈):

void dfs(TreeNode* root) 
{
    if (root == nullptr) 
    {
        return;
    }
    // 依次递归遍历它的左子树和右子树
    dfs(root->left);
    dfs(root->right);
}

其次,BFS 遍历使用队列数据结构:

void bfs(TreeNode* root) 
{
    // 创建一个队列
    queue<TreeNode*> q;
    q.push(root);
    while (!q.empty()) 
    {
        // 在每次循环中,使用 q.front() 获取队头节点,并将其出队
        TreeNode* node = q.front();
        q.pop();

        // 检查这个节点的左右子节点是否为空,如果不为空,就将它们加入队列中
        if (node->left != nullptr) 
        {
            q.push(node->left);
        }
        if (node->right != nullptr)
        {
            q.push(node->right);
        }
    }
}

第二部分 应用BFS求解的典型问题:层序遍历

例题:二叉树的层序遍历

给定一个二叉树,返回其按层序遍历得到的节点值。 层序遍历即逐层地、从左到右访问所有结点。

什么是层序遍历呢?简单来说,层序遍历就是把二叉树分层,然后每一层从左到右遍历 (配图来源):

乍一看,这个遍历顺序和 BFS 是一样的,我们可以直接用 BFS 得出层序遍历结果。然而,层序遍历要求的输入结果和 BFS 是不同的。层序遍历要求我们区分每一层,也就是返回一个二维数组。而 BFS 的遍历结果是一个一维数组,无法区分每一层。

 那么,怎么给 BFS 遍历的结果分层呢?我们首先来观察一下 BFS 遍历的过程中,结点进队列和出队列的过程:

 截取 BFS 遍历过程中的某个时刻:

可以看到,此时队列中的结点是 3、4、5,分别来自第 1 层和第 2 层。这个时候,第 1 层的结点还没出完,第 2 层的结点就进来了,而且两层的结点在队列中紧挨在一起,我们 无法区分队列中的结点来自哪一层。

因此,我们需要稍微修改一下代码,在每一层遍历开始前,先记录队列中的结点数量n(也就是这一层的结点数量),然后一口气处理完这一层的n个结点。

// 二叉树的层序遍历
void bfs(TreeNode* root) 
{
    queue<TreeNode*> q;
    q.push(root);
    while (!q.empty()) 
    {
        int n = q.size();
        for (int i = 0; i < n; i++) 
        {
            TreeNode* node = q.front();
            q.pop();
            if (node->left != nullptr) 
            {
                q.push(node->left);
            }
            if (node->right != nullptr) 
            {
                q.push(node->right);
            }
        }
    }
}

这样,我们就将 BFS 遍历改造成了层序遍历。在遍历的过程中,结点进队列和出队列的过程为:

可以看到,在 while 循环的每一轮中,都是将当前层的所有结点出队列,再将下一层的所有结点入队列,这样就实现了层序遍历。

最终我们得到的题解代码为:

vector<vector<int>> levelOrder(TreeNode* root) 
{
    vector<vector<int>> res;
    queue<TreeNode*> q;
    if (root != nullptr) 
    {
        q.push(root);
    }
    while (!q.empty()) 
    {
        int n = q.size();
        vector<int> level;
        for (int i = 0; i < n; i++) 
        {
            TreeNode* node = q.front();
            q.pop();
            level.push_back(node->val);
            if (node->left != nullptr) 
            {
                q.push(node->left);
            }
            if (node->right != nullptr) 
            {
                q.push(node->right);
            }
        }
        res.push_back(level);
    }
    return res;
}

BFSDFS都是常用的图搜索算法。它们的区别在于搜索的策略和复杂度。引用中提到,对于给定的问题,BFS是较佳的算法BFS(广度优先搜索)是一种逐层扩展搜索的算法。它从起始节点开始,逐层遍历邻接节点,直到找到目标节点或遍历完整个图。BFS使用队列来存储待访问的节点,确保按照层级的顺序进行搜索。BFS算法的时间复杂度为O(V + E),其中V是节点的数量,E是边的数量。 DFS(深度优先搜索)是一种递归实现的搜索算法。它从起始节点开始,不断沿着路径深入直到无法继续或找到目标节点,然后回溯到上一个节点,继续探索其他路径。DFS使用栈来存储待访问的节点,它的搜索路径是深度优先的。DFS算法的时间复杂度为O(V + E),其中V是节点的数量,E是边的数量。 在实际应用中,BFSDFS都有各自的优缺点。BFS通常用于解决最短路径和最小生成树等问题,而DFS更适合用于寻找所有可能的解,如图的连通性和拓扑排序等问题。选择使用哪种算法取决于具体的问题和需求。引用中提到,我们在学习数据结构时通常会接触到BFSDFS算法,尤其是在图的遍历和二叉树的遍历中经常用到。 总结起来,BFSDFS是常用的图搜索算法,它们在搜索策略和复杂度上有不同。BFS逐层扩展搜索,适用于最短路径和最小生成树等问题。DFS深度优先搜索,适用于寻找所有可能解的问题。具体选择哪种算法取决于问题的特点和需求。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [熬夜怒肝,图解算法BFSDFS的直观解释](https://blog.csdn.net/c406495762/article/details/117307841)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 48
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

v_JULY_v

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值