求一个整数的和子式

原创 2013年12月05日 19:36:50

题目:

这是一道在QQ群里调侃时所见到的题

题目的内容大概是这个样子

将一个整数分解成其他整数加和的形式,比如输入4,产生如下输出

1+1+1+1
2+1+1
1+2+1
3+1
1+1+2
2+2
1+3
4

解法一(递归的方法)

这个解法是一个递归的方法,思路就是将输入的数n拆分成a+b的形式然后求所有的b的可能的解,然后再与a相加

代码如下:

#include <iostream>
#include <vector>
using namespace std;

vector<vector<int>> find_Add(int n)
{
    vector<vector<int>> outside;
    for(int i = 1; i != n; i++)
    {
        vector<vector<int>> temp;
        temp = find_Add(n - i);
        for(auto iter_out = temp.begin(); iter_out != temp.end(); iter_out++)
        {
            iter_out->push_back(i);
            outside.push_back(*iter_out);
        }
    }
    vector<int> inside;
    inside.push_back(n);
    outside.push_back(inside);
    return outside;
}

int main()
{
    vector<vector<int>> hello;
    int n = 1;
    while(cin >> n)
    {
        hello = find_Add(n);
        cout << hello.size() << endl;
        for(auto iter = hello.begin(); iter != hello.end(); iter++)
        {
        	auto iter2 = iter->begin();
            for(; iter2 != iter->end() - 1; iter2++)
            {
                cout << *iter2 << '+';
            }
            cout << *(iter2++) << endl;
        }
        hello.clear();
    }
    return 0;
}

递归的方法虽然简单,但是因为重复运算了很多遍子结果,所以效率很低

解法二(保存小结果)

为了不重复计算子结果,将其保存下来,以供后面计算使用。这样,比解法一多消耗一倍的空间,但是能够节省大量的时间

vector<vector<int>> find_Add(int n)
{
    vector<vector<vector<int>>> table;
    for(int i = 0; i != n; i++)
    {
        vector<int> temp_in{i + 1};
        vector<vector<int>> temp_mid{temp_in};
        temp_mid.reserve(pow(2,i));
        table.push_back(temp_mid);
        
    }
    for(int i = 0; i != n; i++)
    {
        auto iter_now = table.begin() + i;
        for(int j = i; j != 0; j--)
        {
            vector<vector<int>> &temp_mid = table.at(i - j);
            for(auto iter_mid = temp_mid.begin(); iter_mid != temp_mid.end(); iter_mid++)
            {
                (*iter_mid).push_back(j);
                (*iter_now).push_back(*iter_mid);
                (*iter_mid).pop_back();
            }
        }
    }
    return table.at(n - 1);
}

运行时间对比

在我电脑上的运行时间如下,单位是秒:

n 15 20
解法一 0.95 3.868
解法二 0.2 0.65


版权声明:本作品由掠雪墨影创作,采用知识共享署名 4.0 国际许可协议进行许可。转载请以链接形式标明本文地址。

matlab-线性代数 各阶主子式、余子式、代数余子式

慈心积善融学习,技术愿为有情学。善心速造多好事,前人栽树后乘凉。我今于此写经验,愿见文者得启发。 各阶主子式 a=[1 2 3;4 5 6;6 7 8] n=input('几...
  • yushaopu
  • yushaopu
  • 2016年07月05日 09:03
  • 1237

c语言实现求余子式

利用 double yuzishi(double *h,int i,int j,int m,int n) { int k,l,x,y; double q;     double *b...
  • u011146989
  • u011146989
  • 2014年10月02日 19:25
  • 437

求一个整数所有约数的和(除自身外)

求一个整数所有约数的和(除自身外)
  • duan19920101
  • duan19920101
  • 2017年02月17日 16:54
  • 380

求一个整型数组中的最大连续子序列和

求一个整型数组中的最大连续子序列和,例如数组(3,2,-1,4,-3)中和最大的连续子序列为(2,-1,4),其和为5。 Java代码如下: public class Main { public...
  • csulfy
  • csulfy
  • 2016年10月17日 23:36
  • 549

矩阵论学习笔记之一矩阵的约当标准形

矩阵的约当标准形   k阶行列式因子的定义p83 讲这个定义之前,要先弄清楚下面两个基本概念: 其一,k阶子式的概念 其二,最大公因式的概念 k阶子式的概念可以追溯到线性代数中关于矩阵的介...
  • liuy_yy
  • liuy_yy
  • 2012年02月15日 21:26
  • 6430

给定一个0~1000的整数,求各位数的和

/* 给定一个0~1000的整数,求各位数的和,例 如345的结果是3+4+5=12注:分解数字既可以先 除后模也可以先模后除(知识点:变量和运算符 综合应用) [必做题] * */ packag...
  • bear_zk
  • bear_zk
  • 2017年09月18日 20:43
  • 276

求一个整数数组的连续子数组的最大和.

/**思路:时间复杂度O(n).1.首先设置两个变量来进行数组元素相机加的传递。sum和b.2.判断b3.如果b不小于0,则继续加上a[i];最后将b和sum进行对比,sum*/public clas...
  • github_36429631
  • github_36429631
  • 2016年10月20日 10:12
  • 278

linux下设计一个Shell脚本:求命令行上所有整数和

问题:设计一个Shell脚本:求命令行上所有整数和 Shell代码: 调用add.sh脚本结果:...
  • zzh_569754126
  • zzh_569754126
  • 2015年11月12日 19:28
  • 2127

求一个C语言程序的问题: 调用函数,求3个整数中的最大者

#include int main() { int max(); extern int a,b,c; printf("please enter three integer numbers:"...
  • u013644191
  • u013644191
  • 2014年02月13日 15:05
  • 591

求一个字符串中所有连续的整数和

 求一个字符串中所有连续的整数和  int sum(char str[]){   int j=0; int sum=0;//返回值 char store_int_segment[10];//暂存连续的...
  • sendy888
  • sendy888
  • 2007年07月25日 13:54
  • 709
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:求一个整数的和子式
举报原因:
原因补充:

(最多只允许输入30个字)