求一个整数的和子式

原创 2013年12月05日 19:36:50

题目:

这是一道在QQ群里调侃时所见到的题

题目的内容大概是这个样子

将一个整数分解成其他整数加和的形式,比如输入4,产生如下输出

1+1+1+1
2+1+1
1+2+1
3+1
1+1+2
2+2
1+3
4

解法一(递归的方法)

这个解法是一个递归的方法,思路就是将输入的数n拆分成a+b的形式然后求所有的b的可能的解,然后再与a相加

代码如下:

#include <iostream>
#include <vector>
using namespace std;

vector<vector<int>> find_Add(int n)
{
    vector<vector<int>> outside;
    for(int i = 1; i != n; i++)
    {
        vector<vector<int>> temp;
        temp = find_Add(n - i);
        for(auto iter_out = temp.begin(); iter_out != temp.end(); iter_out++)
        {
            iter_out->push_back(i);
            outside.push_back(*iter_out);
        }
    }
    vector<int> inside;
    inside.push_back(n);
    outside.push_back(inside);
    return outside;
}

int main()
{
    vector<vector<int>> hello;
    int n = 1;
    while(cin >> n)
    {
        hello = find_Add(n);
        cout << hello.size() << endl;
        for(auto iter = hello.begin(); iter != hello.end(); iter++)
        {
        	auto iter2 = iter->begin();
            for(; iter2 != iter->end() - 1; iter2++)
            {
                cout << *iter2 << '+';
            }
            cout << *(iter2++) << endl;
        }
        hello.clear();
    }
    return 0;
}

递归的方法虽然简单,但是因为重复运算了很多遍子结果,所以效率很低

解法二(保存小结果)

为了不重复计算子结果,将其保存下来,以供后面计算使用。这样,比解法一多消耗一倍的空间,但是能够节省大量的时间

vector<vector<int>> find_Add(int n)
{
    vector<vector<vector<int>>> table;
    for(int i = 0; i != n; i++)
    {
        vector<int> temp_in{i + 1};
        vector<vector<int>> temp_mid{temp_in};
        temp_mid.reserve(pow(2,i));
        table.push_back(temp_mid);
        
    }
    for(int i = 0; i != n; i++)
    {
        auto iter_now = table.begin() + i;
        for(int j = i; j != 0; j--)
        {
            vector<vector<int>> &temp_mid = table.at(i - j);
            for(auto iter_mid = temp_mid.begin(); iter_mid != temp_mid.end(); iter_mid++)
            {
                (*iter_mid).push_back(j);
                (*iter_now).push_back(*iter_mid);
                (*iter_mid).pop_back();
            }
        }
    }
    return table.at(n - 1);
}

运行时间对比

在我电脑上的运行时间如下,单位是秒:

n 15 20
解法一 0.95 3.868
解法二 0.2 0.65


版权声明:本作品由掠雪墨影创作,采用知识共享署名 4.0 国际许可协议进行许可。转载请以链接形式标明本文地址。

相关文章推荐

java实现求可逆矩阵使用代数余子式的形式

import java.text.DecimalFormat; /** * 求可逆矩阵使用代数余子式的形式 * @author imlilu * */ public class Invers...

线性代数导论19——行列式公式和代数余子式

本文是Gilbert Strang的线性代数导论课程笔记。课程地址:http://v.163.com/special/opencourse/daishu.html   第十九课时:行列式公式和代数余子...

求一个整数数组中第N大的数

前不久,看到了一个有点意思的问题,如何求一个整数数组中第N大的数,如果是以前,我肯定先用快排把这个数组进行排序,然后再取第N大的数,但是那天看到了这种解题思路,顿时觉得自己有点脑残。。。。 快排的思...

求一个范围内的所有整数的平方和

#include // validate that input is an integer int get_int(void); // validate that range limits are ...

求一个整数分解成连续数字的和

--学习记录论坛问题帖:http://bbs.csdn.net/topics/390416116 思路: 设输入数字为S; 有N个连续整数(N>1),最小整数为M(M>=1),则第二为M+1......
  • SQL77
  • SQL77
  • 2013-04-07 13:18
  • 1290

求一个整数的二进制中1的个数

题目:输入一个整数,求该整数的二进制表达中有多少个1。例如输入10,由于其二进制表示为1010,有两个1,因此输出2。 分析:这是一道很基本的考查位运算的面试题。包括微软在内的很多公司都曾采用过...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)