R中的高效批量处理函数(lapply sapply apply tapply mapply)

R语言提供了批量处理函数,可以循环遍历某个集合内的所有或部分元素,以简化操作。

这些函数底层是通过C来实现的,所以效率也比手工遍历来的高效。
批量处理函数有很重要的apply族函数:lapply sapply apply tapply mapply。apply族函数是高效能计算的运算向量化(Vectorization)实现方法之一,比起传统的for,while常常能获得更好的性能。
    apply : 用于遍历数组中的行或列,并且使用指定函数来对其元素进行处理。
    lapply : 遍历列表向量内的每个元素,并且使用指定函数来对其元素进行处理。返回列表向量。
    sapply : 与lapply基本相同,只是对返回结果进行了简化,返回的是普通的向量。
    mapply: 支持传入两个以上的列表。  

   tapply: 接入参数INDEX,对数据分组进行运算,就和SQL中的by group一样。

(1)行或列遍历操作函数apply

 apply(X, MARGIN, FUN, ...)
     
参数:

       X: an array, including a matrix.

  MARGIN: 1:行操作; 2:列操作

 FUN:函数名

用apply可以很方便地按行列求和/平均,其结果与colMeans,colSums,rowMeans,rowSums是一样的。

举例如下:

> a<-matrix(1:12,c(3,4))
> a
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
> apply(a,1,sum)
[1] 22 26 30
> apply(a,2,sum)
[1]  6 15 24 33
> apply(a,1,function(x) sum(x)+2)
[1] 24 28 32
> apply(a,1,function(x) x^2)
     [,1] [,2] [,3]
[1,]    1    4    9
[2,]   16   25   36
[3,]   49   64   81
[4,]  100  121  144

(2)列表(list)遍历函数lapply

lapply(list, function, ...)
特点:对每列进行操作,非常适合数据框;输入的数据必须是list型。

> a<-matrix(1:12,c(3,4))
> a
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
> a.df<-data.frame(a)
> a
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
> is.list(a.df)
[1] TRUE
> str(a.df)
'data.frame':    3 obs. of  4 variables:
 $ X1: int  1 2 3
 $ X2: int  4 5 6
 $ X3: int  7 8 9
 $ X4: int  10 11 12
> lapply(a.df, function(x) x+3)
$X1
[1] 4 5 6
$X2
[1] 7 8 9
$X3
[1] 10 11 12
$X4
[1] 13 14 15
> lapply(a.df, function(x) sum(x)+3)
$X1
[1] 9
$X2
[1] 18
$X3
[1] 27
$X4
[1] 36
> y<-lapply(a.df, function(x) sum(x)+3)
> is.list(y)
[1] TRUE
> names(y)
[1] "X1" "X2" "X3" "X4"
> y
$X1
[1] 9
$X2
[1] 18
$X3
[1] 27
$X4
[1] 36
> y[1]
$X1
[1] 9
> y[[1]]
[1] 9
> y$X1
[1] 9

(3)sapply

sapply(list, function, ..., simplify)
simplify=F:返回值的类型是list,此时与lapply完全相同
simplify=T(默认值):返回值的类型由计算结果定,如果函数返回值长度为1,则sapply将list简化为vector;
如果返回的列表中每个元素的长度都大于1且长度相同,那么sapply将其简化位一个矩阵



> yy<-sapply(a.df, function(x) x^2)
> yy
     X1 X2 X3  X4
[1,]  1 16 49 100
[2,]  4 25 64 121
[3,]  9 36 81 144
> str(yy)
 num [1:3, 1:4] 1 4 9 16 25 36 49 64 81 100 ...
 - attr(*, "dimnames")=List of 2
  ..$ : NULL
  ..$ : chr [1:4] "X1" "X2" "X3" "X4"
> str(y)
List of 4
 $ X1: num 9
 $ X2: num 18
 $ X3: num 27
 $ X4: num 36

> yy<-sapply(a.df, function(x,y) x^2+y, y=3)
> yy
     X1 X2 X3  X4
[1,]  4 19 52 103
[2,]  7 28 67 124
[3,] 12 39 84 147> y1<-sapply(a.df, sum)
> y1
X1 X2 X3 X4
 6 15 24 33
> str(y1)
 Named int [1:4] 6 15 24 33
 - attr(*, "names")= chr [1:4] "X1" "X2" "X3" "X4"
> y1<-sapply(a.df, sum,simplify=F)
> y1
$X1
[1] 6

$X2
[1] 15

$X3
[1] 24

$X4
[1] 33

> str(y1)
List of 4
 $ X1: int 6
 $ X2: int 15
 $ X3: int 24
 $ X4: int 33

(4)mapply:mapply是sapply的多变量版本(multivariate sapply),Apply a Function to Multiple List or Vector  Arguments

mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE)

> mapply(function(x,y) x^y, c(1:5), c(1:5))
[1]    1    4   27  256 3125
> a<-matrix(1:12,c(3,4))
> a
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
> mapply(sum, a[,1],a[,3],a[,4])
[1] 18 21 24

> mapply(function(x,y,z) x^2+y+z, a[,1],a[,3],a[,4])
[1] 18 23 30

(5) tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE)

x是需要处理的向量,INDEX是因子(因子列表),FUN是需要执行的函数,simplify指是否简化输入结果(考虑sapply对于lapply的简化)

补充个因子函数gl,它可以很方便的产生因子,在方差分析中经常会用到

> gl(3,5)                 3是因子水平数,5是重复次数
 [1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
Levels: 1 2 3
> gl(3,1,15)                 15是结果的总长度
 [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Levels: 1 2 3


>  df <- data.frame(year=kronecker(2001:2003, rep(1,4)), loc=c('beijing','beijing','shanghai','shanghai'), type=rep(c('A','B'),6), sale=rep(1:12))
> df
   year      loc type sale
1  2001  beijing    A    1
2  2001  beijing    B    2
3  2001 shanghai    A    3
4  2001 shanghai    B    4
5  2002  beijing    A    5
6  2002  beijing    B    6
7  2002 shanghai    A    7
8  2002 shanghai    B    8
9  2003  beijing    A    9
10 2003  beijing    B   10
11 2003 shanghai    A   11
12 2003 shanghai    B   12
> tapply(df$sale,df[,c('year','loc')],sum)
      loc
year   beijing shanghai
  2001       3        7
  2002      11       15
  2003      19       23
> tapply(df$sale,df[,c('type','loc')],sum)
    loc
type beijing shanghai
   A      15       21
   B      18       24

<think>好的,我现在需要回答用户关于R语言applysapplylapply函数的区别及使用场景的问题。首先,我得回忆一下这些函数的基本用法和区别。根据用户提供的引用内容,特别是引用[2]和引用[3],apply主要用于数组或矩阵的行或列操作,而lapplysapply处理列表或向量,其中sapply会简化输出结果。 接下来,我需要确定如何组织这些信息。用户要求结构清晰,逐步解决问题,所以可能需要先分别介绍每个函数,再比较它们的区别,最后给出使用场景的例子。同时,用户提到要生成相关问题,这部分需要放在最后。 然后,检查每个函数的语法和示例是否正确。比如,apply函数的使用示例是否正确,比如行列标准化。根据引用[1],apply的一个常见用途是行列标准化,所以需要确保示例代码正确。例如,使用apply(data, 1, function(x) (x - mean(x))/sd(x))来计算行的标准化,而列的标准化则是margin为2。 对于lapply,它返回列表,所以例子应该展示如何对列表中的每个元素进行操作,比如计算每个元素的平方根。而sapply则会根据结果简化成向量或矩阵,比如计算均值后返回向量。引用[3]中的例子是正确的,sapply(x, mean)会返回向量。 需要确保每个函数的特点都讲清楚,比如apply适用于数组,lapply处理列表返回列表,sapply简化结果。同时,结合用户提供的引用内容,引用[4]提到函数返回值放在列表里,所以lapply的输出符合这一结构。 最后,生成的相关问题需要与主题相关,比如询问性能差异、如何处理更复杂的数据结构,或者替代函数mapply的用法。确保问题覆盖用户可能感兴趣的扩展内容。 现在,我需要将这些思考整理成一个结构化的回答,确保每个部分都有对应的引用支持,并且语法正确,特别是数学表达式使用$...$格式,独立公式用$$...$$。过,当前问题主要涉及代码示例,可能数学公式较少,但如果有的话需要正确应用格式。 总结步骤: 1. 分别介绍applylapplysapply的基本用法。 2. 对比三者的区别,强调输入和输出结构。 3. 提供具体的使用场景示例。 4. 引用对应的参考资料。 5. 生成相关问题。</think>### R语言apply系列函数的区别与用法 #### 1. **`apply()`函数** - **用途**:主要用于数组或矩阵的行或列操作,通过指定`MARGIN`参数(1为行,2为列)对数据逐行或逐列计算。 - **语法**: ```R apply(X, MARGIN, FUN, ...) ``` - **示例**: ```R # 对矩阵的行计算均值 data <- matrix(1:9, nrow=3) apply(data, 1, mean) # 输出:2 5 8 [^2] # 对列进行标准化 apply(data, 2, function(x) (x - mean(x))/sd(x)) [^1] ``` - **特点**:输入需为多维数据结构(如矩阵),输出类型取决于函数`FUN`的结果。 #### 2. **`lapply()`函数** - **用途**:对列表或向量中的每个元素应用函数,**始终返回列表**。 - **语法**: ```R lapply(X, FUN, ...) ``` - **示例**: ```R # 对列表中的每个元素计算平方根 x <- list(a=1:3, b=4:6) lapply(x, sqrt) # 输出:列表,每个元素为对应平方根 [^4] ``` - **特点**:输入为列表或向量,输出为列表,适合需要保留结果结构的场景。 #### 3. **`sapply()`函数** - **用途**:与`lapply()`类似,但尝试将结果简化为向量或矩阵。 - **语法**: ```R sapply(X, FUN, ..., simplify=TRUE) ``` - **示例**: ```R # 对列表中的每个元素计算均值(结果简化为向量) x <- list(a=1:3, b=4:6) sapply(x, mean) # 输出:向量c(2,5) [^3] ``` - **特点**:若所有结果长度相同且大于1,返回矩阵;若长度为1,返回向量。 #### 对比总结 | 函数 | 输入结构 | 输出结构 | 适用场景 | |----------|----------------|----------------|------------------------------| | `apply` | 矩阵/数组 | 向量/矩阵 | 行列聚合操作(如标准化) | | `lapply` | 列表/向量 | 列表 | 保留结果结构的逐元素计算| | `sapply` | 列表/向量 | 向量/矩阵/列表 | 简化结果的逐元素计算 | #### 使用场景示例 - **`apply`**:数据标准化、行列汇总统计。 - **`lapply`**:批量读取文件后处理,返回结构化结果。 - **`sapply`**:快速获取统计值(如均值、方差),简化输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值