Face Alignment at 3000FPS工程配置

原创 2014年12月18日 14:03:55

根据Face Alignment at 3000 FPS via Regressing Local Binary Features这篇文章的源代码的配置


1. 源代码地址:https://github.com/jwyang/face-alignment,里面也有相应的英文介绍


2. 环境:windows64位+matlab2014a


3. 下载数据库,因为需要数据做训练样本,可以从http://ibug.doc.ic.ac.uk/resources/facial-point-annotations下载,有多个样本集,可以下载需要的样本


4. 为代码中的训练样本函数的依赖库liblinear配置,从http://www.csie.ntu.edu.tw/~cjlin/liblinear/,可以直接下载liblinear库,然后如果你的系统是windows64位的就直接从里面的windows文件夹中将里面的文件全部拷贝到matlab工程文件夹中


5. 准备数据。比如我现在将AFW与LFPW作为训练样本的集合,那么先解压然后保存到D:\Projects_Face_Detection\Datasets文件夹中,这是因为工程中train_model.m文件下第40行中定义的,也可以自己做修改.


6.因为train_model.m文件中40行表示读入训练样本的数据的文件是Path_Images.txt,所以进入控制台先转到目录D:\Projects_Face_Detection\Datasets\afw,然后输入命令dir /b/s/p/w *.jpg>Path_Images.txt,这是将所有jpg的文件的文件名都输入到Path_Images.txt文件中,同样转到目录D:\Projects_Face_Detection\Datasets\lfpw文件夹中输入命令dir /b/s/p/w *.png>Path_Images.txt,因为lfpw的数据都是png文件。


7.然后我们开始训练样本,在matlab文件夹下新建一个m文件,然后里面输入一下代码:


filepath_ranf='./ranf.mat';
filepath_ws='./ws.mat';
 
lbfmodel=train_model({'afw''lfpw'});
 
ranf =lbfmodel.ranf;
ws = lbfmodel.Ws;
 
save(filepath_ranf,'ranf');
save(filepath_ws,'ws');

然后执行,训练样本的时间可能会过长。目的是将训练后的结果导入ranf.mat与ws.mat文件夹中.当训练完毕后,可以在face_alignment文件中看到ranf.mat与ws.mat两个文件,大概120M多。


8.观看结果。比如现在想将ibug数据集作为结果,那么在将ibug解压到D:\Projects_Face_Detection\Datasets目录,然后进入控制台转到目录下输入dir /b/s/p/w *.jpg>Path_Images.txt。然后在matlab文件夹下新建一个m文件,在里面输入下面代码:

filepath_ranf='./ranf.mat';
filepath_ws='./ws.mat';
 
r=load(filepath_ranf);
w=load(filepath_ws);
 
ranf=r.ranf;
ws=w.ws;
 
t.ranf=ranf;
t.Ws=ws;
 
test_model({'ibug'},t);

就可以看到结果了。


Face Alignment at 3000 FPS 学习理解和具体实现

这篇论文主要讲:Face Alignment 问题,即给人脸确定位置68个标点 (landmark)。 而这些标点位置肯定是最能区别不同人的位置。 Face Alignment 是很重要的,是人脸...
  • xp215774576
  • xp215774576
  • 2015年04月14日 10:47
  • 7613

Face Alignment at 3000 FPS通俗易懂讲解一 随机森林的生成

Face Alignment at 3000 FPS通俗易懂讲解 思想:先局部,再整体。 局部:获取标记点的局部二值特征。 具体做法: 若干个样本N,每个样本有n个标记点(如68)。 对这N个样本划...
  • rongrongyaofeiqi
  • rongrongyaofeiqi
  • 2016年12月27日 19:28
  • 1108

【论文笔记】Face Alignment at 3000 FPS via Regressing Local Binary Features

论文:Face Alignment at 3000 FPS via Regressing Local Binary Features.pdf 实现:https://github.com/luoye...
  • haoji007
  • haoji007
  • 2016年10月16日 08:32
  • 289

人脸对齐 3000fps

3000fps 是一种人脸对齐的方法,其主要特点是快速,论文上指出在手机上可以达到300帧,本文整理了个人对3000fps方法的整理,并给出一定量的关于个人实现的细节。总体上我认为论文的水准很高,论文...
  • huneng1991
  • huneng1991
  • 2017年05月30日 12:02
  • 946

Face Alignment at 3000 FPS通俗易懂讲解三 全局回归与测试

Face Alignment at 3000 FPS通俗易懂讲解 思想:先局部,再整体。 局部:获取标记点的局部二值特征。 整体:全局形状约束、减少局部误差。...
  • rongrongyaofeiqi
  • rongrongyaofeiqi
  • 2016年12月28日 16:48
  • 679

Face Alignment at 3000 FPS 阅读笔记

《Face Alignment at 3000 FPS》 又是msra孙剑组一篇cvpr大作,之前实现了他之前的一篇《Face Alignment by Explicit Shape Regressi...
  • huangynn
  • huangynn
  • 2016年07月06日 17:18
  • 2019

Face alignment in 3000 FPS 代码的运行

网上对论文 face alignment at 3000 fps via regressing local binary features 代码解析很少,希望能给读者代码详细的解析.这能论文下载地址 ...
  • xp215774576
  • xp215774576
  • 2015年04月15日 12:47
  • 4417

Face Alignment by 3000 FPS系列学习总结(一)

face alignment 流程图train阶段测试阶段预处理裁剪图片 tr_data = loadsamples(imgpathlistfile, 2); 说明: 本函数用于将原始图片取grou...
  • xiamentingtao
  • xiamentingtao
  • 2016年03月07日 21:14
  • 3824

face alignment by 3000 fps系列学习总结(三)

训练我们主要以3000fps matlab实现为叙述主体。总体目标 我们需要为68个特征点的每一个特征点训练5棵随机树,每棵树4层深,即为所谓的随机森林。 开始训练 分配样本 事实上...
  • xiamentingtao
  • xiamentingtao
  • 2016年03月08日 21:21
  • 3070

Face Alignment at 3000FPS(C++版)工程配置

3000FPS是人脸对齐算法,特点是速度快!我利用的是thinkface上一位大牛提供的代码http://www.thinkface.cn/thread-3136-1-1.html这里面提供了C++版...
  • Sunshine_in_Moon
  • Sunshine_in_Moon
  • 2015年11月14日 21:11
  • 5878
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Face Alignment at 3000FPS工程配置
举报原因:
原因补充:

(最多只允许输入30个字)