正定矩阵式自共轭矩阵的一种。正定矩阵类似复数中的正实数。定义:对于对称矩阵M,当且仅当存在任意向量x,都有

若上式大于等于零,则称M为半正定矩阵。正定矩阵记为M>0。

也被称为正定二次型
正定矩阵的判定
1、所有特征值为正数(根据谱定理,若条件成立,必然可以找到对角矩阵呢D和正定矩阵P,使M=P^-1DP);
2、所有的顺序主子式为正定;
3、Cholesky分解得到的矩阵,其主对角线上的元素全为正数;
4、矩阵有半双线性映射形式。
首先解释双线性映射。假设三个向量空间X, Y和Z,有Z = B(X, Y)。对于X或Y中的任意向量都有到Z的唯一映射。如果把X固定,Y中的元素就存在到Z的线性映射,反过来也一样。
所谓半双线性映射,就是它的两个参数一个是线性的,另一个是半线性的(或共轭线性)。如:

复数空间的内积都是半双线性的。
正定矩阵的性质
1、正定矩阵均可逆,且逆矩阵也为正定矩阵;
2、正定矩阵与正实数的乘积也为正定;
3、迹Tr(M)>0;
4、存在唯一的平方根矩阵B,使得:


若上式大于等于零,则称M为半正定矩阵。正定矩阵记为M>0。

也被称为正定二次型
正定矩阵的判定
1、所有特征值为正数(根据谱定理,若条件成立,必然可以找到对角矩阵呢D和正定矩阵P,使M=P^-1DP);
2、所有的顺序主子式为正定;
3、Cholesky分解得到的矩阵,其主对角线上的元素全为正数;
4、矩阵有半双线性映射形式。
首先解释双线性映射。假设三个向量空间X, Y和Z,有Z = B(X, Y)。对于X或Y中的任意向量都有到Z的唯一映射。如果把X固定,Y中的元素就存在到Z的线性映射,反过来也一样。
所谓半双线性映射,就是它的两个参数一个是线性的,另一个是半线性的(或共轭线性)。如:

复数空间的内积都是半双线性的。
正定矩阵的性质
1、正定矩阵均可逆,且逆矩阵也为正定矩阵;
2、正定矩阵与正实数的乘积也为正定;
3、迹Tr(M)>0;
4、存在唯一的平方根矩阵B,使得:

正定矩阵详解
本文介绍了正定矩阵的概念及其判定方法,包括所有特征值为正数、所有顺序主子式为正定等。此外还探讨了正定矩阵的性质,如均可逆且逆矩阵也为正定矩阵、与正实数的乘积仍为正定矩阵等。
1万+

被折叠的 条评论
为什么被折叠?



