正定矩阵的意义

矩阵正定(百度百科)
设M是n阶实系数对称矩阵, 如果对任何一非零实向量X,都使二次型f(X)= X′MX>0,则称f(X)为正定二次型,f(X)的矩阵M称为正定矩阵(Positive Definite)。[1]  正定矩阵在相合变换下可化为标准型, 即单位矩阵。所有特征值大于零的对称矩阵(或厄米特矩阵)也是正定矩阵。
另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵.  
  判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。  
  判定定理2:对称阵A为正定的充分必要条件是:A的各阶顺序主子式都为正。  
  判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。


此外还有一种矩阵的概念--正矩阵:

设矩阵A为m*n维,元素为aij。称A为非负矩阵,若aij>=0,对任何i=1,..,m,j=1,...n成立,即A的所有元素是非负的。若上式中严格的不等式成立,即A的所有元素为正,则称A为正矩阵。

区别:

正定矩阵限定为正方矩阵,而正矩阵可以是非正方的矩阵;

正定矩阵A由其二次型(x^H)Ax>0,对任意x不等于0来定义,而正矩阵由其元素aij>0定义;

正定矩阵常用符号(x^H)Ax>0表示,而正矩阵用符号 A>0表示。

 

正定矩阵的意义:

看了网上了资料,第一感觉就是正定矩阵变换之后如求逆等还是正定的,算是保持正定这个性质;

其次就是特征值全为正,可以方便后续处理吧;

再贴一个百度知道里一个说明作用的例子:

任意一个向量x,跟他垂直的超平面把空间分成两部分,一部分和x在同一侧,即满足和x的内积为正的那侧,一部分在异侧,内积为负。

 

由定义,正定的线性变换把任意一个向量x都变到x的同侧。

 

如果它有实特征值,必定是正数,否则的话它会把这特征向量变到另侧。

 

一个线性变换把一组幺正基e1,...,en变到另一组向量v1,...,vn,这n个新向量的端点和原点一起构成一个多面体。这多面体的体积就是线性变换的行列式。对正定变换来说,其行列式为正,所以这个多面体非退化,且v1,...,vn确定的定向和e1,...,en确定的定向相同。

 

补充:不会保持形状不变.保持不变的必须是等距,就是说,必须是正交变换O(n).

 

正定变换一般最常见的情况是正定对称变换.正定对称变换最常见的情况是用来定义内积.即定义<x,y> = x'Ay为x,y的内积.欧氏空间的内积用I来定义,即<x,y>=x'y.


  • 7
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 对称正定矩阵可以进行特征值分解,得到的特征向量和特征值是: 1. 特征向量:对称正定矩阵的特征向量是指在矩阵进行线性变换后,仍然在原来的方向上的非零向量。特征向量在特征值分解中扮演着非常重要的角色,它们构成了矩阵的特征向量空间。 2. 特征值:对称正定矩阵的特征值是指在特征向量进行线性变换时,每个特征向量所对应的比例因子。特征值是一个实数,它可以为正、零或负。在特征值分解中,特征值与特征向量是一一对应的。 通常我们会将特征向量按照对应的特征值大小降序排列,这样可以得到一个按照重要性排序的特征向量矩阵,这个矩阵可以用来进行降维、数据压缩和数据可视化等操作。 ### 回答2: 对称正定矩阵的特征值和特征向量在其分解过程中都能得到。 对称正定矩阵能够进行特征值分解,即将其分解为特征值和特征向量的乘积形式。特征值是一个实数,特征向量则是一个非零向量。特征向量具有一些重要的性质,例如不变性和正交性。 在特征值分解中,我们通过求解矩阵的特征方程来得到特征值。特征方程为 det(A-λI)=0,其中A是对称正定矩阵,λ是特征值,I是单位矩阵。解特征方程可以得到对称正定矩阵的n个特征值。特征值代表了矩阵在特定方向上的缩放因子。 而特征向量则是在满足特征方程的特征值下,通过解线性方程组(A-λI)x=0得到的非零解向量。一个对称正定矩阵有n个线性无关的特征向量,可以组成一个正交矩阵,使得A可以表示为特征值与特征向量的乘积形式。 总结起来,对称正定矩阵的特征值和特征向量都是在其分解过程中得到的。特征值是通过求解矩阵的特征方程得到的,代表了矩阵在特定方向上的缩放因子;而特征向量是通过解特征值所满足的线性方程组得到的,代表了矩阵在对应特征值方向上的特殊几何性质。 ### 回答3: 对称正定矩阵的特征值和特征向量的性质如下: 特征值是一个实数λ,表示矩阵在特征向量上的伸缩因子。 特征向量是一个非零向量v,表示矩阵在这个方向上的伸缩。 对称正定矩阵是指矩阵A满足A的转置等于自身,且对于所有非零向量x都有x^T * A * x > 0。 对称正定矩阵可以进行特征值分解,即将矩阵A分解为A = Q * Λ * Q^T,其中Q为正交矩阵,Λ为对角矩阵,对角线上的元素为矩阵A的特征值。 特征向量可以由特征值和矩阵A求得,即对于每一个特征值λ,解方程(A - λI) * v = 0,其中I为单位矩阵,v为对应的特征向量。特征向量可以通过特征值归一化得到。 因此,对称正定矩阵分解出来的特征值和特征向量分别对应矩阵A的特征值和特征向量,特征向量可以由特征值求得。特征值和特征向量对于分析和描述矩阵A的性质和变换具有重要意义。特征值表示变换的伸缩因子,而特征向量表示变换的方向。特征值和特征向量的分解使得对称正定矩阵的分析和应用变得更加方便和简洁。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值