线性判别分析(Linear Discriminant Analysis, LDA)算法分析

线性判别分析(LDA)是一种经典的模式识别算法,旨在通过投影高维样本到最佳鉴别矢量空间,增强类别间的可分离性。本文详细介绍了LDA的基本思想、假设、公式推导以及物理意义,并通过实例展示了LDA在分类问题中的应用,对比了LDA与PCA的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LDA算法入门

 

一. LDA算法概述:

线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引入模式识别和人工智能领域的。性鉴别分析的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性。因此,它是一种有效的特征抽取方法。使用这种方法能够使投影后模式样本的类间散布矩阵最大,并且同时类内散布矩阵最小。就是说,它能够保证投影后模式样本在新的空间中有最小的类内距离和最大的类间距离,即模式在该空间中有最佳的可分离性。

二. LDA假设以及符号说明:

假设对于一个空间有m个样本分别为x1,x2,……xm 即 每个x是一个n行的矩阵,其中表示属于i类的样本个数,假设有一个有c个类,则

………………………………………………………………………… 类间离散度矩阵

………………………………………………………………………… 类内离散度矩阵

………………………………………………………………………… 属于i类的样本个数

 …………………………………………………………………………… 第i个样本

 …………………………………………………………………………… 所有样本的均值

 …………………………………………………………………………… 类i的样本均值

 

 

 

 

三. 公式推导,算法形式化描述

根据符号说明可得类i的样本均值为:

 …………………………………………………………………… (1

同理我们也可以得到总体样本均值:

………………………………………………………………………… (2

根据类间离散度矩阵和类内离散度矩阵定义,可以得到如下式子:

  ……………………………………………… (3

http://hi.csdn.net/attachment/201004/11/47140_1270987769CK7K.png…………………………………… (4

当然还有另一种类间类内的离散度矩阵表达方式:

其中是指i类样本的先验概率,即样本中属于i类的概率(),把代入第二组式子中,我们可以发现第一组式子只是比第二组式子都少乘了1/m,我们将在稍后进行讨论,其实对于乘不乘该1/m,对于算法本身并没有影响,现在我们分析一下算

在MATLAB中,你可以通过` Statistics and Machine Learning Toolbox `来实现线性判别分析Linear Discriminant Analysis, LDA)。LDA是一种常用的有监督降维技术,尤其适用于高维分类问题,它试图找到能最大化类别间方差同时最小化类内方差的方向来进行投影。 以下是使用MATLAB进行LDA的基本步骤: 1. **准备数据集**: 假设你有一个包含两个或更多类别的样本矩阵`X`和对应的标签向量`Y`。每个样本应该是一个行向量。 ```matlab % 示例数据集 load fisheriris; % 加载内置的鸢尾花数据集 X = meas; % 特征数据 Y = species; % 类别标签 ``` 2. **数据预处理**: 确保数据已经被正则化或者标准化,因为LDA对各个特征的尺度敏感。 3. **创建模型**: 使用`fitcdiscr`函数构建线性判别分析模型,传入输入变量`X`和目标变量`Y`。 ```matlab ldaModel = fitcdiscr(X, Y); ``` 4. **拟合数据**: 运行模型以拟合数据,得到类别中心、协方差矩阵等信息。 5. **预测**: 可以使用`predict`函数对新的观测值进行分类。 6. **交叉验证**: 如果需要评估模型性能,可以使用`crossvalind`和`kfoldLoss`进行K折交叉验证。 7. **评估性能**: 使用`classificationReport`或`confusionmat`函数生成混淆矩阵,计算准确率、召回率等指标。 8. **结果可视化**: 对于二维或三维的LDA降维后的数据,可以使用`scatter3`或`plotSWD`函数绘制类别之间的分布。 ```matlab scores = predict(ldaModel, X); % 预测得分 figure; scatter3(scores(:,1), scores(:,2), Y, 'filled'); xlabel('First Linear Discriminant'); ylabel('Second Linear Discriminant'); zlabel('Class Index'); ``` 9. **性能测量**: 结果通常会以混淆矩阵的形式展示出来,查看主对角线上的元素(真正例)和非主对角线上元素(误分类),可以计算出精度、查准率(Precision)、查全率(Recall)和F1分数等。 ```matlab confMat = confusionmat(Y, scores); accuracy = sum(diag(confMat))/sum(confMat(:)); ```
评论 61
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值