线性判别分析(Linear Discriminant Analysis, LDA) 算法分析与代码

线性判别分析(LDA)用于特征降维,旨在最大化类间距离和最小化类内距离,以解决高维特征导致的过拟合问题。通过计算类内和类间样本均值,构建类间离散度矩阵和类内离散度矩阵,并应用Fisher线性鉴别器选择投影矩阵,选择最大特征值对应的特征向量作为降维方向。
摘要由CSDN通过智能技术生成

1. 算法描述
LDA是一种特征降维算法,目前的工作在使用SVM分类的时候,遇到特征维数过大而导致过拟合的问题,所以希望通过LDA算法降低特征维度,解决过拟合的问题。LDA算法的目的是使得样本在投影后的子空间中保持最大的类间距离和最小的类内距离。

2. 公式推导
首先计算类内样本均值和类间样本均值:
这里写图片描述
这里写图片描述
然后得到类间离散度矩阵和类内离散度矩阵:
这里写图片描述
这里写图片描述
通过fisher线性鉴别器分析,选取的投影矩阵为:
这里写图片描述
即:
这里写图片描述
投影矩阵即取列向量为d个最大特征值对应的特征向量的组合。

3. 代码解释

functi
抱歉,您提到的是LDALinear Discriminant Analysis),这上文提到的文本主题建模(Latent Dirichlet Allocation)不同。LDA是用于自然语言处理中的主题模型,而Linear Discriminant Analysis线性判别分析)则是一种统计学方法,用于二分类或多分类问题,通过最大化类别间的方差和最小化类别内的方差来进行特征转换。 下面是一个简单的C++代码示例,展示了如何实现基于高斯分布的LDA: ```cpp #include <iostream> #include <Eigen/Dense> // 假设我们有观测矩阵 X 和类别标签 y MatrixXd X; // 观测值矩阵 VectorXd y; // 类别标签向量 // 按类别划分数据 std::vector<MatrixXd> X_train; std::vector<MatrixXd> X_test; std::vector<VectorXd> y_train; std::vector<VectorXd> y_test; // Linear Discriminant Analysis 函数 MatrixXd computelda() { int d = X.cols(); // 特征维度 int n = X.rows(); // 样本总数 int k = unique(y).size(); // 类别数目 // 计算先验概率 VectorXd pi(n, 0); for (int i = 0; i < n; ++i) { pi(i) = count(y.begin(), y.end(), y[i]) / static_cast<double>(n); } // 计算均值和协方差矩阵 MatrixXd mu(k, d), Sigma(k, d, d); for (int c = 0; c < k; ++c) { MatrixXd X_c = X.rowwise().select(y == c); mu(c, :) = X_c.colwise().mean(); Sigma(c, :, :) = X_c.colwise().cov(); } // 解线性组合 MatrixXd W = (Sigma.fullPivLu().solveDiagonal().asDiagonal() - inv(pi)).inverse(); return W; } int main() { // 对数据进行预处理 // ... // 计算W MatrixXd W = computelda(); // 应用到新样本上 MatrixXd transformed_data = X * W; // 使用transformed_data进行后续分类 return 0; } ``` 请注意,这个例子非常基础,实际应用中可能需要处理缺失值、正则化等问题,并且可能需要依赖更专业的机器学习库如MLPack或Shogun等。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值