OpenCV 编程入门

10 篇文章 0 订阅
4 篇文章 0 订阅

OpenCV 编程入门

美国伊力诺理工学院计算机科学系Gady Adam

翻译:Mensch

2006年11月22日


内容

简介

OpenCV概述

  • 什么是OpenCV 
    • 开源C/C++计算机视觉库.
    • 面向实时应用进行优化.
    • 跨操作系统/硬件/窗口管理器.
    • 通用图像/视频载入、存储和获取.
    • 由中、高层API构成.
    • 为Intel®公司的 Integrated Performance Primitives (IPP) 提供了透明接口.
  • 特性:
    • 图像数据操作 (分配,释放, 复制, 设定, 转换).
    • 图像与视频 I/O (基于文件/摄像头输入, 图像/视频文件输出).
    • 矩阵与向量操作与线性代数计算(相乘, 求解, 特征值, 奇异值分解SVD).
    • 各种动态数据结构(列表, 队列, 集, 树, 图).
    • 基本图像处理(滤波, 边缘检测, 角点检测, 采样与插值, 色彩转换, 形态操作, 直方图, 图像金字塔).
    • 结构分析(连接成分, 轮廓处理, 距离转换, 模板匹配, Hough转换, 多边形近似, 线性拟合, 椭圆拟合, Delaunay三角化).
    • 摄像头标定 (寻找并跟踪标定模板, 标定, 基础矩阵估计, homography估计, 立体匹配).
    • 动作分析(光流, 动作分割, 跟踪).
    • 对象辨识 (特征方法, 隐马可夫链模型HMM).
    • 基本GUI(显示图像/视频, 键盘鼠标操作, 滚动条).
    • 图像标识 (直线,辅助opencv-root>/docs/index.htmopencv-root>/samples/c/目录中):opencv-root>/samples/c/目录中):fitellipse

OpenCV 命名约定

  • 函数命名:
        cvActionTarget[Mod](...)

    Action = 核心功能(例如 设定set, 创建create)
    Target = 操作目标 (例如 轮廓contour, 多边形polygon)
    [Mod] =bit_depth>(S|U|F)C<number_of_channels>

    S = 带符号整数
    U = 无符号整数
    F =bit_depth>(S|U|F)

    cv.h>
    #include <cvaux.h>
    #include <highgui.h>
    #include <cxcore.h> // 不必要 - 该头文件已在 cv.h 文件中包含

编译命令

  • Linux系统:
    g++ hello-world.cpp -o hello-world /
    -I /usr/local/include/opencv -L /usr/local/lib /
    -lm -lcv -lhighgui -lcvaux
  • Windows系统:
    注意在项目属性中设好OpenCV头文件以及库文件的路径.

C程序实例


//
// hello-world.cpp
//
// 一个简单的OpenCV程序
// 它从一个文件中读取图像,将色彩值颠倒,并显示结果.
//

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <cv.h>
#include <highgui.h>


int main(int argc, char *argv[])
{
IplImage* img = 0;
int height,width,step,channels;
uchar *data;
int i,j,k;

if(argc<2){
printf("Usage: main <image-file-name>/n/7");
exit(0);
}

// 载入图像
img=cvLoadImage(argv[1]);
if(!img){
printf("Could not load image file: %s/n",argv[1]);
exit(0);
}

// 获取图像数据
height = img->height;
width = img->width;
step = img->widthStep;
channels = img->nChannels;
data = (uchar *)img->imageData;
printf("Processing a %dx%d image with %d channels/n",height,width,channels);

// 创建窗口
cvNamedWindow("mainWin", CV_WINDOW_AUTOSIZE);
cvMoveWindow("mainWin", 100, 100);

// 反色图像
for(i=0;i<height;i++) for(j=0;j<width;j++) for(k=0;k<channels;k++)
data[i*step+j*channels+k]=255-data[i*step+j*channels+k];

// 显示图像
cvShowImage("mainWin", img );

// wait for a key
cvWaitKey(0);

// release the image
cvReleaseImage(&img );
return 0;
}

GUI命令

窗口管理

  • 创建并放置一个窗口:
      cvNamedWindow("win1", CV_WINDOW_AUTOSIZE); 
    cvMoveWindow("win1", 100, 100); // 以屏幕左上角为起点的偏移量
  • 读入图像:
      IplImage* img=0; 
    img=cvLoadImage(fileName);
    if(!img) printf("Could not load image file: %s/n",fileName);
  • 显示图像:
      cvShowImage("win1",img);

    可显示彩色或灰度的字节/浮点图像。 彩色图像数据认定为BGR顺序.

  • 关闭窗口:
      cvDestroyWindow("win1");
  • 改变窗口尺寸:
      cvResizeWindow("win1",100,100); // 新的宽/高值(象素点)

输入设备 

CV_EVENT_FLAG_CTRLKEY)
printf("Left button down with CTRL pressed/n");
break;

case CV_EVENT_LBUTTONUP:
printf("Left button up/n");
break;
}
}

// x,y: 针对左上角的像点坐标

// event: CV_EVENT_LBUTTONDOWN, CV_EVENT_RBUTTONDOWN, CV_EVENT_MBUTTONDOWN,
// CV_EVENT_LBUTTONUP, CV_EVENT_RBUTTONUP, CV_EVENT_MBUTTONUP,
// CV_EVENT_LBUTTONDBLCLK, CV_EVENT_RBUTTONDBLCLK, CV_EVENT_MBUTTONDBLCLK,
// CV_EVENT_MOUSEMOVE:

// flags: CV_EVENT_FLAG_CTRLKEY, CV_EVENT_FLAG_SHIFTKEY, CV_EVENT_FLAG_ALTKEY,
// CV_EVENT_FLAG_LBUTTON, CV_EVENT_FLAG_RBUTTON, CV_EVENT_FLAG_MBUTTON
  • 注册handler:
      mouseParam=5;
    cvSetMouseCallback("win1",mouseHandler,&mouseParam);

    key=cvWaitKey(10);
    key=cvWaitKey(0); // 无限等待键盘输入
  • 键盘输入循环:
      while(1){
    key=cvWaitKey(10);
    if(key==27) break;



    }
    }
  • 处理滚动条事件:
    • 定义滚动条handler:
        void trackbarHandler(int pos)
      {
      printf("Trackbar position: %d/n",pos);
      }
    • 注册handler:
        int trackbarVal=25;
      int maxVal=100;
      cvCreateTrackbar("bar1", "win1", &trackbarVal ,maxVal , trackbarHandler);
    • 获取滚动条当前位置:
        int pos = cvGetTrackbarPos("bar1","win1");
    • 设定滚动条位置:
        cvSetTrackbarPos("bar1", "win1", 25);
      // 色彩通道数(1,2,3,4)
      |-- int depth; // 图像宽度(象素点数)
      |-- int height; // 图像高度(象素点数)

      |-- char* imageData; // 指针指向成一列排列的图像数据
      | // 注意色彩顺序为BGR
      |-- int dataOrder; // 0 - 彩色通道交叉存取 BGRBGRBGR,
      | // 1 - 彩色通道分隔存取 BBBGGGRRR
      | // 函数cvCreateImage只能创建交叉存取的图像
      |-- int origin; // 0 - 起点为左上角,
      | // 1 - 起点为右下角(Windows位图bitmap格式)
      |-- int widthStep; // 每行图像数据所占字节大小
      |-- int imageSize; // 图像数据所占字节大小 = 高度*每行图像数据字节大小
      |-- struct _IplROI *roi;// 图像ROI. 若不为NULL则表示需要处理的图像
      | // 区域.
      |-- char *imageDataOrigin; // 指针指向图像数据原点
      | // (用来校准图像存储单元的重新分配)
      |
      |-- int align; // 图像行校准: 4或8字节校准
      | // OpenCV不采用它而使用widthStep
      |-- char colorModel[4]; // 元素类型(uchar,short,int,float,double)
      |-- int step; // 一行所占字节长度
      |-- int rows, cols; // 尺寸大小
      |-- int height, width; // 备用尺寸参照
      |-- union data;
      |-- uchar* ptr; // 针对unsigned char矩阵的数据指针
      |-- short* s; // 针对short矩阵的数据指针
      |-- int* i; // 针对integer矩阵的数据指针
      |-- float* fl; // 针对float矩阵的数据指针
      |-- double* db; // 针对double矩阵的数据指针


      CvMatND // N-维数组
      |-- int type; // 元素类型(uchar,short,int,float,double)
      |-- int dims; // 数组维数
      |-- union data;
      | |-- uchar* ptr; // 针对unsigned char矩阵的数据指针
      | |-- short* s; // 针对short矩阵的数据指针
      | |-- int* i; // 针对integer矩阵的数据指针
      | |-- float* fl; // 针对float矩阵的数据指针
      | |-- double* db; // 针对double矩阵的数据指针
      |
      |-- struct dim[]; // 每个维的信息
      |-- size; // 该维内元素个数
      |-- step; //4D向量

      初始化函数:

      CvScalar s = cvScalar(double val0, double val1=0, double val2=0, double val3=0);

      举例:

      CvScalar s = cvScalar(20.0);
      s.val[0]=10.0;

      注意:初始化函数与数据结构同名,只是首字母小写. 它不是C++的构造函数.

    其他数据结构

    • 点:
      CvPoint      p = cvPoint(int x, int y);
      CvPoint2D32f p = cvPoint2D32f(float x, float y);
      CvPoint3D32f p = cvPoint3D32f(float x, float y, float z);
      例如:
      p.x=5.0;
      p.y=5.0;
    • 长方形尺寸:
      CvSize       r = cvSize(int width, int height);
      CvSize2D32f r = cvSize2D32f(float width, float height);
    • 带偏移量的长方形尺寸:
      CvRect       r = cvRect(int x, int y, int width, int height);




      depth: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U,
      IPL_DEPTH_16S, IPL_DEPTH_32S, IPL_DEPTH_32F, IPL_DEPTH_64F

      channels: 1, 2, 3 or 4.
      注意数据为交叉存取.彩色图像的数据编排为b0 g0 r0 b1 g1 r1 ...

      举例:

      // 分配一个单通道字节图像
      IplImage* img1=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);

      // 分配一个三通道浮点图像
      IplImage* img2=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
    • 释放图像空间:
      IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1); 
      cvReleaseImage(&img);
    • 复制图像:
      IplImage* img1=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1); 
      IplImage* img2;
      img2=cvCloneImage(img1);

      void cvResetImageROI(IplImage* image);
      vRect cvGetImageROI(const IplImage* image);

      大部分OpenCV函数都支持ROI.
      // 0=all
      int cvGetImageCOI(const IplImage* image);

      大部分OpenCV函数暂不支持COI.

    读取存储图像

    • 从文件中载入图像:
        IplImage* img=0; 
      img=cvLoadImage(fileName);
      if(!img) printf("Could not load image file: %s/n",fileName);

      Supported image formats: BMP, DIB, JPEG, JPG, JPE, PNG, PBM, PGM, PPM,
      SR, RAS, TIFF, TIF

      载入图像默认转为3通道彩色图像. 如果不是,则需加flag:

        img=cvLoadImage(fileName,flag);

      0 载入图像转为三通道彩色图像
      =0 载入图像转为单通道灰度图像
      <0 不转换载入图像(通道数与图像文件相同).
    • 图像存储为图像文件:
        if(!cvSaveImage(outFileName,img)) printf("Could not save: %s/n",outFileName);

      输入文件格式由文件扩展名决定.

    存取图像元素

    • 假设需要读取在i行j列像点的第k通道. 其中, 行数i的范围为[0, height-1], 列数j的范围为[0, width-1], 通道k的范围为[0, nchannels-1].
    • 间接存取: (比较通用, 但效率低, 可读取任一类型图像数据)
      • 对单通道字节图像:
        IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
        CvScalar s;
        s=cvGet2D(img,i,j); // get the (i,j) pixel value
        printf("intensity=%f/n",s.val[0]);
        s.val[0]=111;
        cvSet2D(img,i,j,s); // set the (i,j) pixel value
      • 对多通道浮点或字节图像:
        IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
        CvScalar s;
        s=cvGet2D(img,i,j); // get the (i,j) pixel value
        printf("B=%f, G=%f, R=%f/n",s.val[0],s.val[1],s.val[2]);
        s.val[0]=111;
        s.val[1]=111;
        s.val[2]=111;
        cvSet2D(img,i,j,s); // set the (i,j) pixel value
    • 直接存取: (效率高, 但容易出错)
      • 对单通道字节图像:
        IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
        ((uchar *)(img->imageData + i*img->widthStep))[j]=111;
      • 对多通道字节图像:
        IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);
        ((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 0]=111; // B
        ((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 1]=112; // G
        ((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 2]=113; // R
      • 对多通道浮点图像:
        IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
        ((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 0]=111; // B
        ((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 1]=112; // G
        ((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 2]=113; // R
    • 用指针直接存取 : (在某些情况下简单高效)
      • 对单通道字节图像:
        IplImage* img  = cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
        int height = img->height;
        int width = img->width;
        int step = img->widthStep/sizeof(uchar);
        uchar* data = (uchar *)img->imageData;
        data[i*step+j] = 111;
      • 对多通道字节图像:
        IplImage* img  = cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);
        int height = img->height;
        int width = img->width;
        int step = img->widthStep/sizeof(uchar);
        int channels = img->nChannels;
        uchar* data = (uchar *)img->imageData;
        data[i*step+j*channels+k] = 111;
      • 对单通道浮点图像(假设用4字节调整):
        IplImage* img  = cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
        int height = img->height;
        int width = img->width;
        int step = img->widthStep/sizeof(float);
        int channels = img->nChannels;
        float * data = (float *)img->imageData;
        data[i*step+j*channels+k] = 111;
        c++class T>
        public:
        Image(IplImage* img=0) {imgp=img;}
        ~Image(){imgp=0;}
        void operator=(IplImage* img) {imgp=img;}
        inline T* operator[](const int rowIndx) {
        return ((T *)(imgp->imageData + rowIndx*imgp->widthStep));}
        };

        typedef struct{
        unsigned char b,g,r;
        } RgbPixel;

        typedef struct{
        float b,g,r;
        } RgbPixelFloat;

        typedef Image<RgbPixel> RgbImage;
        typedef Image<RgbPixelFloat> RgbImageFloat;
        typedef Image<unsigned char> BwImage;
        typedef Image<float> BwImageFloat;
      • 单通道字节图像:
        IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
        BwImage imgA(img);
        imgA[i][j] = 111;
      • 多通道字节图像:
        IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);
        RgbImage imgA(img);
        imgA[i][j].b = 111;
        imgA[i][j].g = 111;
        imgA[i][j].r = 111;
      • 多通道浮点图像:
        IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
        RgbImageFloat imgA(img);
        imgA[i][j].b = 111;
        imgA[i][j].g = 111;
        imgA[i][j].r = 111;

    图像转换

    • 转为灰度或彩色字节图像:
      cvConvertImage(src, dst, flags=0);

      src = float/byte grayscale/color image
      dst = byte grayscale/color image
      flags = CV_CVTIMG_FLIP (flip vertically)
      CV_CVTIMG_SWAP_RB (swap the R and B channels)
    • 转换彩色图像为灰度图像:


      使用OpenCV转换函数:

      cvCvtColor(cimg,gimg,CV_BGR2GRAY); // cimg -> gimg


      直接转换:

      for(i=0;i<cimg->height;i++) for(j=0;j<cimg->width;j++) 
      gimgA[i][j]= (uchar)(cimgA[i][j].b*0.114 +
      cimgA[i][j].g*0.587 +
      cimgA[i][j].r*0.299);
    • 颜色空间转换:
      cvCvtColor(src,dst,code); // src -> dst

      code = CV_<X>2<Y>
      <X>/<Y> =

    • 画一组线段:
      CvPoint  curve1[]={10,10,  10,100,  100,100,  100,10};
      CvPoint curve2[]={30,30, 30,130, 130,130, 130,30, 150,10};
      CvPoint* curveArr[2]={curve1, curve2};
      int nCurvePts[2]={4,5};
      int nCurves=2;
      int isCurveClosed=1;
      int lineWidth=1;

      cvPolyLine(img,curveArr,nCurvePts,nCurves,isCurveClosed,cvScalar(0,255,255),lineWidth);


      double hScale=1.0;
      double vScale=1.0;
      int lineWidth=1;
      cvInitFont(&font,CV_FONT_HERSHEY_SIMPLEX|CV_FONT_ITALIC, hScale,vScale,0,lineWidth);

      cvPutText (img,"My comment",cvPoint(200,400), &font, cvScalar(255,255,0));


    bit_depth>(S|U|F)C<number_of_channels>.
    例如: CV_8UC1 表示8位无符号单通道矩阵, CV_32SC2表示32位有符号双通道矩阵.

    例程:
    CvMat* M = cvCreateMat(4,4,CV_32FC1);
  • 释放矩阵空间:
    CvMat* M = cvCreateMat(4,4,CV_32FC1);
    cvReleaseMat(&M);
  • 复制矩阵:
    CvMat* M1 = cvCreateMat(4,4,CV_32FC1);
    CvMat* M2;
    M2=cvCloneMat(M1);
  • 初始化矩阵:
    double a[] = { 1,  2,  3,  4,
    5, 6, 7, 8,
    9, 10, 11, 12 };

    CvMat Ma=cvMat(3, 4, CV_64FC1, a);

    cvInitMatHeader(&Ma, 3, 4, CV_64FC1, a);
  • 初始化矩阵为单位阵:
    CvMat* M = cvCreateMat(4,4,CV_32FC1);
    cvSetIdentity(M); // Set M(i,j)
    t = cvmGet(M,i,j); // Get M(i,j)
  • 直接存取,假设使用4-字节校正:
    CvMat* M    = cvCreateMat(4,4,CV_32FC1);
    int n = M->cols;
    float *data = M->data.fl;

    data[i*n+j] = 3.0;
  • 直接存取,校正字节任意:
    CvMat* M    = cvCreateMat(4,4,CV_32FC1);
    int step = M->step/sizeof(float);
    float *data = M->data.fl;

    (data+i*step)[j] = 3.0;

    CvMat Ma = cvMat(3, 4, CV_64FC1, a);
    a[i*4+j] = 2.0; // Ma(i,j)=2.0;

    cvAdd(Ma, Mb, Mc); // Ma+Mb -> Mc
    cvSub(Ma, Mb, Mc); // Ma-Mb -> Mc
    cvMatMul(Ma, Mb, Mc); // Ma*Mb ->
    cvMul(Ma, Mb, Mc); // Ma.*Mb -> Mc
    cvDiv(Ma, Mb, Mc); // Ma./Mb -> Mc
    cvAddS(Ma, cvScalar(-10.0), Mc); // Ma.-10 -> Mc
  • 向量乘积:
    double va[] = {1, 2, 3};
    double vb[] = {0, 0, 1};
    double vc[3];

    CvMat Va=cvMat(3, 1, CV_64FC1, va);
    CvMat Vb=cvMat(3, 1, CV_64FC1, vb);
    CvMat Vc=cvMat(3, 1, CV_64FC1, vc);

    double res=cvDotProduct(&Va,&Vb); res
    cvCrossProduct(&Va, &Vb, &Vc);
    cvTranspose(Ma, Mb); // transpose(Ma) -> Mb (不能对自身进行转置)
    CvScalar t = cvTrace(Ma); // trace(Ma) -> t.val[0]
    double d = cvDet(Ma); // det(Ma) -> d
    cvInvert(Ma, Mb); // inv(Ma) -> Mb
  • 非齐次线性系统求解:
    CvMat* A  = cvCreateMat(3,3,CV_32FC1);
    CvMat* x = cvCreateMat(3,1,CV_32FC1);
    CvMat* b = cvCreateMat(3,1,CV_32FC1);
    cvSolve(&A, &b, &x); // solve (Ax=b) for x
  • 特征值分析(针对对称矩阵):
    CvMat* A  = cvCreateMat(3,3,CV_32FC1);
    CvMat* E = cvCreateMat(3,3,CV_32FC1);
    CvMat* l = cvCreateMat(3,1,CV_32FC1);
    cvEigenVV(&A, &E, &l); // l = A的特征值 (降序排列)
    // E = 对应的特征向量 (每行)
  • 奇异值分解SVD:
    CvMat* A  = cvCreateMat(3,3,CV_32FC1);
    CvMat* U = cvCreateMat(3,3,CV_32FC1);
    CvMat* D = cvCreateMat(3,3,CV_32FC1);
    CvMat* V = cvCreateMat(3,3,CV_32FC1);
    cvSVD(A, D, U, V, CV_SVD_U_T|CV_SVD_V_T); // A = U D V^T

    标号使得 U 和 V 返回时被转置(若没有转置标号,则有问题不成功!!!).

  • 视频序列操作

    从视频序列中抓取一帧

    • OpenCV支持从摄像头或视频文件(AVI)中抓取图像.
    • 从摄像头获取初始化:
      CvCapture* capture = cvCaptureFromCAM(0); // capture from video device #0
    • 从视频文件获取初始化:
      CvCapture* capture = cvCaptureFromAVI("infile.avi");
    • 抓取帧:
      IplImage* img = 0; 
      if(!cvGrabFrame(capture)){ // 抓取一帧
      printf("Could not grab a frame/n/7");
      exit(0);
      }
      img=cvRetrieveFrame(capture); // 恢复获取的帧图像

      要从多个摄像头同时获取图像, 首先从每个摄像头抓取一帧. 在抓取动作都结束后再恢复帧图像. capture);

      // this call is necessary to get correct
      // capture properties
      int frameH = (int) cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_HEIGHT);
      int frameW = (int) cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_WIDTH);
      int fps = (int) cvGetCaptureProperty(capture, CV_CAP_PROP_FPS);
      int numFrames = (int) cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_COUNT);

      所有帧数似乎只与视频文件有关. 用摄像头时不对,奇怪!!!.

    • 获取帧信息:
      float posMsec   =       cvGetCaptureProperty(capture, CV_CAP_PROP_POS_MSEC);
      int posFrames = (int) cvGetCaptureProperty(capture, CV_CAP_PROP_POS_FRAMES);
      float posRatio = cvGetCaptureProperty(capture, CV_CAP_PROP_POS_AVI_RATIO);

      只对从视频文件抓取有效. 不过似乎也不成功!!!

    存储视频文件

    • 初始化视频存储器:
      CvVideoWriter *writer = 0;
      int isColor = 1;
      int fps = 25; // or 30
      int frameW = 640; // 744 for firewire cameras
      int frameH = 480; // 480 for firewire cameras
      writer=cvCreateVideoWriter("out.avi",CV_FOURCC('P','I','M','1'),
      fps,cvSize(frameW,frameH),isColor);

      其他有效编码:

      CV_FOURCC('P','I','M','1')    = MPEG-1 codec
      CV_FOURCC('M','J','P','G') = motion-jpeg codec (does not work well)
      CV_FOURCC('M', 'P', '4', '2') = MPEG-4.2 codec
      CV_FOURCC('D', 'I', 'V', '3') = MPEG-4.3 codec
      CV_FOURCC('D', 'I', 'V', 'X') = MPEG-4 codec
      CV_FOURCC('U', '2', '6', '3') = H263 codec
      CV_FOURCC('I', '2', '6', '3') = H263I codec
      CV_FOURCC('F', 'L', 'V', '1') = FLV1 codec

      若把视频编码设为-1则将打开一个编码选择窗口(windows系统下).

    • 存储视频文件:
      IplImage* img = 0; 
      int nFrames = 50;
      for(i=0;i<nFrames;i++){
      cvGrabFrame(capture); // 抓取帧
      img=cvRetrieveFrame(capture); // 恢复图像
      cvWriteFrame(writer,img); // 将帧添加入视频文件
      }

      若想在抓取中查看抓取图像, 可在循环中加入下列代码:

      cvShowImage("mainWin", img); 
      key=cvWaitKey(20);writer);// wait 20 ms

      若没有20[毫秒]延迟,将无法正确显示视频序列.

      • 释放视频存储器:
        cvReleaseVideoWriter(&writer);

<script> </script> <script> </script> <script src="http://st.blog.163.com/js/utils/InfoAlertPad.js" type="text/javascript"></script> <script> </script> <script> </script> <script id="visitorInfoJs" src="http://blog.163.com/js/static/visitorInfo.js?host=petrel_68&mode=prev&channel=blog&blogId=fks_095065081087087064093094074065086083087070080084084&pubTime=1186017190897&v=1225176342937" type="text/javascript"></script>

<script id="dwr-st-0" src="http://ud.blog.163.com/petrel_68/dwr/call/plaincall/BlogBean.getCommentsByBlog.dwr?callCount=1&scriptSessionId=%24%7BscriptSessionId%7D07da48ea4b7f4035cf30b314900cd6b6&c0-scriptName=BlogBean&c0-methodName=getCommentsByBlog&c0-id=0&c0-param0=string%3Afks_095065081087087064093094074065086083087070080084084&c0-param1=string%3A2256542220077291310897&c0-param2=boolean%3Afalse&c0-param3=boolean%3Afalse&batchId=0"></script> <script id="dwr-st-0" src="http://ud.blog.163.com/petrel_68/dwr/call/plaincall/BlogBean.getRelateBlogsCircles.dwr?callCount=1&scriptSessionId=%24%7BscriptSessionId%7D07da48ea4b7f4035cf30b314900cd6b6&c0-scriptName=BlogBean&c0-methodName=getRelateBlogsCircles&c0-id=0&c0-param0=string%3Afks_095065081087087064093094074065086083087070080084084&c0-param1=number%3A22565422&c0-param2=boolean%3Afalse&batchId=1"></script>

摘要: 本文旨在帮助读者快速入门OpenCV,而无需阅读冗长的参考手册。掌握了OpenCV的以下基础知识后,有需要的话再查阅相关的参考手册。 目录  [隐藏] 1 一、简介 1.1 1、OpenCV的特点 1.1.1 (1) 总体描述 1.1.2 (2) 功能 1.1.3 (3) OpenCV模块 1.2 2、有用的学习资源 1.2.1 (1) 参考手册: 1.2.2 (2) 网络资源: 1.2.3 (3) 书籍: 1.2.4 (4) 视频处理例程(在 /samples/c/): 1.2.5 (5) 图像处理例程 (在 /samples/c/): 1.3 3、OpenCV 命名规则 1.3.1 (1) 函数名: 1.3.2 (2) 矩阵数据类型: 1.3.3 (3) 图像数据类型: 1.3.4 (4) 头文件: 1.4 4、编译建议 1.4.1 (1) Linux: 1.4.2 (2) Windows: 1.5 5、C例程 2 二、GUI 指令 2.1 1、窗口管理 2.1.1 (1) 创建和定位一个新窗口: 2.1.2 (2) 载入图像: 2.1.3 (3) 显示图像: 2.1.4 (4) 关闭窗口: 2.1.5 (5) 改变窗口大小: 2.2 2、输入处理 2.2.1 (1) 处理鼠标事件: 2.2.2 (2) 处理键盘事件: 2.2.3 (3) 处理滑动条事件: 3 三、OpenCV的基本数据结构 3.1 1、图像数据结构 3.1.1 (1) IPL 图像: 3.2 2、矩阵与向量 3.2.1 (1) 矩阵: 3.2.2 (2) 一般矩阵: 3.2.3 (3) 标量: 3.3 3、其它结构类型 3.3.1 (1) 点: 3.3.2 (2) 矩形框大小(以像素为精度): 3.3.3 (3) 矩形框的偏置和大小: 4 四、图像处理 4.1 1、图像的内存分配与释放 4.1.1 (1) 分配内存给一幅新图像: 4.1.2 (2) 释放图像: 4.1.3 (3) 复制图像: 4.1.4 (4) 设置/获取感兴趣区域ROI: 4.1.5 (5) 设置/获取感兴趣通道COI: 4.2 2、图像读写 4.2.1 (1) 从文件中读入图像: 4.2.2 (2) 保存图像: 4.3 3、访问图像像素 4.3.1 (1) 假设你要访问第k通道、第i行、第j列的像素。 4.3.2 (2) 间接访问: (通用,但效率低,可访问任意格式的图像) 4.3.3 (3) 直接访问: (效率高,但容易出错) 4.3.4 (4) 基于指针的直接访问: (简单高效) 4.3.5 (5) 基于 c++ wrapper 的直接访问: (更简单高效) 4.4 4、图像转换 4.4.1 (1) 字节型图像的灰度-彩色转换: 4.4.2 (2) 彩色图像->灰度图像: 4.4.3 (3) 不同彩色空间之间的转换: 4.5 5、绘图指令 4.5.1 (1) 绘制矩形: 4.5.2 (2) 绘制圆形: 4.5.3 (3) 绘制线段: 4.5.4 (4) 绘制一组线段: 4.5.5 (5) 绘制一组填充颜色的多边形: 4.5.6 (6) 文本标注: 5 五、矩阵处理 5.1 1、矩阵的内存分配与释放 5.1.1 (1) 总体上: 5.1.2 (2) 为新矩阵分配内存: 5.1.3 (3) 释放矩阵内存: 5.1.4 (4) 复制矩阵: 5.1.5 (5) 初始化矩阵: 5.1.6 (6) 初始化矩阵为单位矩阵: 5.2 2、访问矩阵元素 5.2.1 (1) 假设需要访问一个2D浮点型矩阵的第(i, j)个单元. 5.2.2 (2) 间接访问: 5.2.3 (3) 直接访问(假设矩阵数据按4字节行对齐): 5.2.4 (4) 直接访问(当数据的行对齐可能存在间隙时 possible alignment gaps): 5.2.5 (5) 对于初始化后的矩阵进行直接访问: 5.3 3、矩阵/向量运算 5.3.1 (1) 矩阵之间的运算: 5.3.2 (2) 矩阵之间的元素级运算: 5.3.3 (3) 向量乘积: 5.3.4 (4) 单一矩阵的运算: 5.3.5 (5) 非齐次线性方程求解: 5.3.6 (6) 特征值与特征向量 (矩阵为方阵): 6 六、视频处理 6.1 1、从视频流中捕捉一帧画面 6.1.1 (1) OpenCV 支持从摄像头或视频文件(AVI格式)中捕捉帧画面. 6.1.2 (2) 初始化一个摄像头捕捉器: 6.1.3 (3) 初始化一个视频文件捕捉器: 6.1.4 (4) 捕捉一帧画面: 6.1.5 (5) 释放视频流捕捉器: 6.2 2、获取/设置视频流信息 6.2.1 (1) 获取视频流设备信息:
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值