误区
- 线性和非线性的区别是是否可以用直线将样本划分开(这个观点是对的)
- 和同学讨论到logistics模型是线性还是非线性的,很难理解!(logistics模型是广义线性模型)
- 区分一下回归和分类问题,线性模型是可以用来曲线拟合(回归)的,但是线性模型模型的分类一定是一条直线的,例如logistics模型。
线性模型和非线性模型区别
- 线性模型可以是用曲线拟合样本,但是分类的决策边界一定是直线的,例如logistics模型
- 区分是否为线性模型,主要是看一个乘法式子中自变量x前的系数w,如果w只影响一个x,那么此模型为线性模型。或者判断决策边界是否是线性的
- 举例
y=11+ew0+w1∗x1+w2∗x2
画出y和x是曲线关系,但是它是线性模型,因为x1*w1中可以观察到x1只被一个w1影响

本文探讨了机器学习中线性模型和非线性模型的区别。线性模型,如逻辑回归,即使能进行曲线拟合,其分类决策边界仍为直线。非线性模型,如神经网络,通过多层节点的组合形成非线性决策边界。即使单个节点是线性的,如logistics模型,但多层结构使其整体成为非线性模型。
最低0.47元/天 解锁文章
5824





