关闭

第五周任务1-4

408人阅读 评论(0) 收藏 举报
//Triangle.h

class Triangle
{
public:
	Triangle(float x,float y,float z):a(x),b(y),c(z){}//在构造函数中使用参数初始化表对数据成员初始化

	float Perimeter(void);//计算三角形的周长

	float Area(void);//计算并返回三角形的面积

	void showMessage();
private:
	float a,b,c;//三边为私有成员数据
};



//Triangle.cpp


#include<iostream>
#include<cmath>
#include"Triangle.h"
using namespace std;



float Triangle::Perimeter(void)//计算三角形的周长
{
	return(a+b+c);
}

float Triangle::Area(void)//计算并返回三角形的面积
{
	float s,m;
	s=(a+b+c)/2;
	m=sqrt(s*(s-a)*(s-b)*(s-c));
	return m;
}



void Triangle::showMessage()
{
	cout<<"三角形的三边长分别为:"<<a<<'\t'<<b<<'\t'<<c<<endl;

    cout<<"该三角形的周长为:"<<Perimeter()<<'\t'<<"面积为:"<<Area()<<endl<<endl;
}



//main.cpp



#include<iostream>
#include"Triangle.h"

void main(void)
{

	
	/*Triangle Tri1;//定义三角 形类的一个实例(对象)
	Tri1.showMessage();*/
	Triangle Tri1(7,8,9);//定义一个三角形类的一个实例(对象)

	Tri1.showMessage();
	system("PAUSE");
}

0
0
查看评论

第五周任务1-4

#include #include using namespace std; class Triangle { public: float perimeter(void); float area(void); void showMessage(); Triangle...
  • wangmingxing123
  • wangmingxing123
  • 2012-03-19 18:38
  • 241

machine-learning第五周 上机作业

毫无疑问,难度越来越大了,首先我们得复习相关概念: 1、导数(变化率)与微分 (变化量) 2、数学里的 e 为什么叫做自然底数? 3、女神的文章必不可少 剩下的必须慢慢啃了。总之,本章要完全理解我觉得不太可能,但必须能明白nnCostFunction里的每一步。 代码如下: function [J ...
  • dialoal
  • dialoal
  • 2016-01-22 15:32
  • 1667

Coursera—machine learning(Andrew Ng)第五周编程作业

sigmoidGradient.m function g = sigmoidGradient(z) %SIGMOIDGRADIENT returns the gradient of the sigmoid function %evaluated at z % g = SIGMOIDGRAD...
  • ccblogger
  • ccblogger
  • 2017-11-13 16:25
  • 479

coursera机器学习课程第五周——课程笔记

第五周课程学习结束,一直都是边上课边做笔记,没有想过在这里再梳理一遍然后将笔记整理出来,考虑之后觉得这一步很重要,可以借此对学过的这一周所有知识做一个梳理,方便自己更好的理解这些知识,而且这些笔记放在博客里也方便自己以后的回顾,所以坚持将笔记做下去,待到所有课程结束之后再把前四周的课程笔记整理写到这...
  • ccblogger
  • ccblogger
  • 2017-11-13 18:29
  • 191

机器学习第5周!

教辅说这周的作业是史上最难
  • Clifnich
  • Clifnich
  • 2016-09-05 17:47
  • 753

AndrewNg机器学习第五周-神经网络的学习 Neural Networks learning

转自:http://www.cnblogs.com/python27/p/MachineLearningWeek05.html 这一章可能是Andrew Ng讲得最不清楚的一章,为什么这么说呢?这一章主要讲后向传播(Backpropagration, BP)算法,Ng花了一大半的时间在讲如何计算误...
  • csd54496
  • csd54496
  • 2016-11-04 20:39
  • 711

第五周实验报告1-4

#include #include using namespace std; class Triangle {public: Triangle(float x = 1, float y = 1, float z = 1...
  • tao6655306
  • tao6655306
  • 2012-03-21 18:30
  • 266

Coursera吴恩达机器学习课程 总结笔记及作业代码——第5周神经网络续

Neural Networks:Learning上周的课程学习了神经网络正向传播算法,这周的课程主要在于神经网络的反向更新过程。1.1 Cost function我们先回忆一下逻辑回归的价值函数 J(θ)=1m[∑mi=1y(i)log(hθ(x(i)))+(1−y(i))log(1−hθ(x(i...
  • qq_27008079
  • qq_27008079
  • 2017-05-14 21:21
  • 5621

吴恩达机器学习笔记_第五周

神经网络——模型学习   Cost Function:从逻辑回归推广过来 计算最小值,无论用什么方法,都需要计算代价和偏导。   网络结构的前向传播和可向量化的特点:   BP算法:   总结:计算代价函数及偏导  ...
  • hunterlew
  • hunterlew
  • 2016-05-15 11:43
  • 2462

Coursera机器学习-第五周-Neural Network BackPropagation

Cost Function and BackpropagationCost Function 假设有样本m个。x(m)x^{(m)}表示第m个样本输入,y(m)y^{(m)}表示第m个样本输出,LL表示网络的层数,sls_l表示在ll层下,神经但愿的总个数(不包括偏置bias units),SLS...
  • dingchenxixi
  • dingchenxixi
  • 2016-05-22 22:17
  • 4454
    个人资料
    • 访问:316689次
    • 积分:4538
    • 等级:
    • 排名:第7752名
    • 原创:138篇
    • 转载:7篇
    • 译文:0篇
    • 评论:30条
    文章分类
    最新评论